
FRAFOS ABC SBC User Guide
Release 5.5.2

FRAFOS GmbH

Jun 04, 2025

Contents

1 About the ABC Session Border Controller 1
1.1 How to Start? . 2
1.2 Credits . 3

2 Introduction 4
2.1 A Brief Introduction to History and Architecture of SIP . 4
2.2 What is a Session Border Controller (SBC)? . 7

2.2.1 General Behavior of SBCs . 7
2.2.2 General Deployment Scenarios of SBCs . 9

2.3 Do You Need an SBC? . 10
2.4 ABC SBC Networking Concepts . 11

2.4.1 Network Topology . 11
2.4.2 SBC Interfaces . 11
2.4.3 Call Agents . 12
2.4.4 Realms . 12
2.4.5 A-B-C rules . 12

Conditions and Actions . 14
Routing rules . 15

3 Practical Guide to the ABC SBC 16
3.1 Network Planning Guidelines . 16

3.1.1 Topology Model . 16
IP layer topology . 17
IP layer security . 17
Call Agents (CAs) . 17
Realms . 18

3.1.2 SBC Logic . 18
Routing . 18
Media Anchoring . 18
Media Restrictions . 19
Registrar Cache . 19
NAT Handling . 19
SBC High Availability . 19
Downstream Failover and Load-Balancing . 20
Dialing Plan Mediation . 20

3.1.3 Security Policies . 20
Restricting Traffic from Unwanted Sources . 20
Topology Hiding . 21

3.1.4 Capacity planning . 21
Cluster Size . 21
Bandwidth . 22
Public IP Address Space . 22

3.1.5 IT Integration . 22
RESTful interface . 22
Recording . 23
Monitoring . 23
Mass Provisioning . 23

i

Call Detail Record (CDR) Exports . 23
DNS Naming . 23

3.2 Planning Checklists . 23
3.3 A Typical SBC Configuration Example . 25

3.3.1 Identifying Network topology . 25
3.3.2 Describing ABC SBC Realms and Call Agents . 26

Provisioning Call Agents Using RPC . 28
Provisioning Call Agents Using REST API . 29

3.3.3 Configuring Registration Cache and Throttling . 29
3.3.4 SIP Routing . 31
3.3.5 Configuring NAT Handling and Media Anchoring . 34
3.3.6 Configuring transparent dialog IDs . 36
3.3.7 Setting up tracing . 37
3.3.8 Summary of rules . 38
3.3.9 Setting Call Limits . 38
3.3.10 Blacklisting specific IPs and User Agents . 40
3.3.11 Handling P-Asserted-Identity . 41
3.3.12 Where to go from here . 42

4 Initial Configuration 43
4.1 SBC Interfaces Overview . 43
4.2 Web GUI Configuration (Cluster Config Master) . 43

4.2.1 Configuration synchronization in pull mode . 44
4.2.2 Configuration synchronization in push mode . 45

5 Setting Up Web Interface Access and User Accounts 46
5.1 Default User Accounts . 46

6 ABC SBC License 48

7 Interface Configuration 49
7.1 Physical and System Interfaces . 49

7.1.1 SBC nodes . 49
7.1.2 Configuring Virtual IP (VIP) Address (OPTIONAL: in HA mode only) 50

7.2 SBC Interfaces . 51
7.3 Retro Compatibility . 53

7.3.1 Common issues and fixes . 53
Applications . 54

8 TLS profiles Configuration 56
8.1 TLS profile options . 57
8.2 Certificate requirements . 58
8.3 Let’s encrypt gocertbot . 58

8.3.1 Renewal . 58
8.3.2 Settings example . 58
8.3.3 Process . 61

http01 . 61
dns01 . 61
Success . 61
Failure . 61

8.3.4 Requirement . 62
8.3.5 Renewal . 62
8.3.6 Limitations . 62
8.3.7 Debug . 62

9 Hardware Specific Configurations 63
9.1 Network adapters . 63
9.2 Configuration of SBC Number of Threads . 64
9.3 Configuration of sysctl settings . 64

ii

10 General ABC Configuration Guide 65
10.1 Physical, System and SBC Interfaces . 65
10.2 Defining Rules . 66

10.2.1 Condition Types . 67
10.2.2 Condition Operators . 69
10.2.3 Condition Values and Regular Expressions . 70
10.2.4 Actions . 71
10.2.5 Additional rule properties . 72

10.3 Using Replacements in Rules . 72
10.3.1 Example Use of Replacement Expressions . 75

10.4 Using Regular Expression Backreferences in Rules . 77
10.5 Binding Rules together with Call Variables . 78
10.6 SIP Routing . 79

10.6.1 Routing Rules (B) . 80
10.6.2 Static Routes . 81
10.6.3 Table-based Dynamic Routes . 83
10.6.4 Request-URI Based Routes . 85
10.6.5 Determination of the IP destination and Next-hop Load-Balancing 86
10.6.6 IP Blacklisting: Adaptive Availability Management . 89
10.6.7 SIP Routing by Example . 91

10.7 View A-B-C rules . 95
10.8 SIP Mediation . 95

10.8.1 Why is SIP Mediation Needed? . 96
10.8.2 Request-URI Modifications . 97
10.8.3 Changing Identity . 98

Substitution Expressions . 99
10.8.4 SIP Header Processing . 99

SIP Header Modification Examples . 100
Option tags . 101

10.8.5 Early Media, Ring Back Tone and Forking . 101
10.8.6 Call transfers . 103
10.8.7 INVITE with Replaces handling . 104
10.8.8 Mapping Dialog-IDs in INVITEs with Replaces . 104
10.8.9 Other mediation actions . 104

10.9 SDP Mediation . 105
10.9.1 Codec Signaling . 106
10.9.2 Media Type Filtering . 106
10.9.3 CODEC Filtering . 107
10.9.4 CODEC Preference . 108
10.9.5 SDP Bandwidth attribute limiting . 109

10.10 Media Handling . 110
10.10.1 Introduction . 110
10.10.2 Media Anchoring (RTP Relay) . 111

RTP, RTCP and FAX (T.38) Relay . 112
Symmetric RTP Mode and NATs . 112
Intelligent Relay (Media Path Optimization) . 112
Advanced Anchoring Options . 113

10.10.3 RTP and SRTP Interworking . 114
10.10.4 SRTP End to End encryption . 114
10.10.5 Transcoding . 114
10.10.6 Audio Recording . 115

SIPREC specific options . 116
10.10.7 Playing Audio Announcements . 117
10.10.8 Onboard Conferencing . 118

Conferencing room pin protected . 120
Record and play username . 121
Multi lingual conferencing announcements . 122

10.11 NAT Traversal . 123

iii

10.11.1 NAT Traversal Configuration Example . 125
10.12 Registration Caching and Handling . 127

10.12.1 Registration Handling Configuration Options . 128
10.12.2 Registrar off-load . 131
10.12.3 Registration Caching and Handling by Example . 132
10.12.4 Registration Agent . 136

10.13 Call Data Records (CDRs) . 138
10.13.1 CDRs Location . 138
10.13.2 CDR Format . 138
10.13.3 Access to CDRs . 139
10.13.4 Customized CDR Records . 139

10.14 Advanced Use Cases with Provisioned Data . 140
10.14.1 RESTful Interface . 140

RESTful Interface using Digest Authentication Example 142
10.14.2 Provisioned Tables . 144

Configuring Tables . 144
Provisioned Table Example: Static Registration . 145
Provisioned Table Example: URI Blacklist . 147
Table Example: Dialing Plan Normalization and Least-Cost-Routing 148
Table Example: Bulk Registration . 152
Provisioning Tables Using RPC or REST API . 154

10.14.3 ENUM Queries . 154
10.15 SIP-WebRTC Gateway . 154

10.15.1 WebRTC Network Architecture and Protocols . 157
10.15.2 WebRTC Network Configuration . 159
10.15.3 WebRTC Credentials Configuration . 161
10.15.4 WebRTC Rules Configuration . 162
10.15.5 WebRTC Interoperability Recommendations . 166

10.16 Amazon Elastic Cloud Configuration Cookbook . 167
10.16.1 Before you Start: Prerequisites and Important Warnings 167
10.16.2 Quick Start Using Cloud Formation . 168
10.16.3 Quick Start: Launch Single Instance . 169
10.16.4 Updating License . 169
10.16.5 Introducing Geographic Dispersion . 170
10.16.6 Monitoring the Autoscaling Cluster Using CloudWatch 173
10.16.7 Performance Recommendations . 176

10.17 Template parameters . 176
10.17.1 Definition of Template Parameter . 176

Define parameter directly in input field . 177
Define parameters on the “Cluster config parameters” screen 177

10.17.2 Set specific values for Template Parameters . 177

11 ABC SBC System administration 179
11.1 User Management . 179

11.1.1 GUI User Management . 179
11.1.2 CLI User Management . 180
11.1.3 GUI Two Factor Authentication . 181
11.1.4 Passwordless authentication . 181

11.2 Server Administration . 182
11.2.1 SSH to host . 183

11.3 Backup and Restore Operations . 183
11.3.1 ABC SBC Configuration Management . 183
11.3.2 ABC SBC Configuration Backup . 184
11.3.3 ABC SBC Recovery Procedure . 185
11.3.4 Manual Backup of the Complete SBC Configuration 186
11.3.5 Manual Restore of the Complete SBC Configuration 187

11.4 How to setup a Semi-redundant CCM on ABC SBC . 188
11.4.1 Setup primary CCM node . 188

iv

11.4.2 Setup backup CCM node . 189
11.4.3 Configure configuration snapshot backups . 189
11.4.4 Setup configuration backups transfer to backup CCM node 189
11.4.5 Steps to make the backup CCM available in case of primary CCM node failure 190
11.4.6 Steps to be done on SBC nodes to start using new CCM 190
11.4.7 Additional steps and checks . 191

11.5 Upgrade Procedure . 191
11.5.1 Container ABC SBC upgrade . 191

11.6 Migration from 4.5/4.6 to 5.0 . 192
11.6.1 ABC SBC migration procedure . 192

Expected things which might be surprising . 195
Expected things which might be surprising . 195

11.7 SBC Dimensioning and Performance Tuning . 195
11.7.1 Trunking Use Case . 196
11.7.2 Trunking with Transcoding . 196
11.7.3 Traffic Estimates for Residential VoIP . 196
11.7.4 Performance Tuning . 197

11.8 Removing SBC Node . 197
11.9 High Availability administration . 198

11.9.1 High Availability statuses . 198
11.9.2 High Availablility switchover . 198
11.9.3 External track point for lowering HA priority . 198

12 Monitoring and Troubleshooting 199
12.1 Overview of Monitoring and Troubleshooting Techniques . 199
12.2 Live ABC SBC Information . 200

12.2.1 Registration Cache . 200
12.2.2 Live Calls . 201
12.2.3 Destination Blacklists . 201
12.2.4 Registration Agents . 202
12.2.5 Call Agents status . 203
12.2.6 Conference Rooms . 204
12.2.7 System status . 204
12.2.8 User Recent Traffic . 205
12.2.9 View Logs . 206

12.3 Measurements and Monitoring . 207
12.3.1 Prometheus Configuration . 207
12.3.2 SNMP Configuration . 207
12.3.3 General Prometheus Statistics . 208
12.3.4 Prometheus Statistics per Realm / Call Agent . 208
12.3.5 Prometheus Statistics per Interfaces . 209
12.3.6 User Defined Counters . 210

12.4 Additional Sources of Diagnostics Information . 210
12.5 Viewing ABC SBC Logs . 210
12.6 Coredumps . 211

13 Securing SIP Networks using ABC SBC and ABC Monitor (optional) 213
13.1 SIP Security Principles: Collect, Analyze and Police . 213
13.2 Police: Devising Security Rules in the ABC SBC . 215

13.2.1 Manual IP-layer Blocking . 217
13.2.2 Automatic IP Address Blocking . 218

Scoring system . 220
Setting up automatic blacklisting . 221

13.2.3 Automatic Proactive Blocking: Greylisting . 222
13.2.4 Manual SIP Traffic Blocking . 225

Blocking by User-Agent, From and Other SIP Headers Fields 225
Blocking by IP Address . 226
Blocking by IP Address Range . 227

v

Blocking a User by his Registration Status . 228
Blocking by Geographic Origin . 229

13.2.5 Traffic Limiting and Shaping . 230
Traffic Limiting and Shaping by Example . 232
Bandwidth limits by example . 233

13.2.6 Call Duration Control . 234
Setting Call Length Limits . 234
Controlling SIP Session Timers (SST) . 234
Setting RTP Inactivity Timer and Keepalive Timer . 235

13.3 Collect Events: Gathering Usage Data in the ABC Monitor . 235
13.3.1 Reporting Security Events . 235
13.3.2 Setting up Diagnostic Events . 236

13.4 Practices for Devising Secure Rule-basis . 237
13.4.1 Topology Hiding . 237

Default Address Hiding . 238
Transparent and Non-Transparent Dialog ID . 238
Hiding Addresses in Well-known SIP header-fields . 238
Hiding Contact Header in REGISTER . 239
Hiding All Other Header Fields . 239
Concealing Media . 239
Preventing SIP Digest Leak: . 239
Preventing Resource Exhaustion Attacks: . 240

13.4.2 Devising a secure rule-base . 240
Shaping the Signaling Rate . 240
Instant Responses . 240
Dropping . 241
Database Checks . 241
More Limits . 242
Diagnostic Events . 242
Processing Legitimate Traffic . 243

14 Preview of Experimental Features 244
14.1 Using Two-Factor Authentication for Users . 244

14.1.1 Prerequisites . 244
14.1.2 Rules for Two Factor Authentication Processing . 250
14.1.3 Rules for determining User Status and discriminating by it 251
14.1.4 Routing Rule to Connect Two Factor Authentication Processing and User Discrimination 252
14.1.5 Scenario Modifications . 252

14.2 AWS: Reputation Lists . 252
14.2.1 Setting Up ABC SBC for Use of Reputation List on AWS 253
14.2.2 Setting Up ABC Monitor for Use of Reputation List on AWS 253

14.3 Server Transaction limits . 253
14.3.1 Setting proper limits . 255

14.4 New restify CDR process . 255
14.4.1 CDRs Location . 255
14.4.2 CDRs configuration . 255
14.4.3 CDR Format . 256

classic . 256
webconf . 256
Tweak . 257

Index 258

vi

Chapter 1

About the ABC Session Border Controller

This manual is a complete handbook for the ABC Session Border Controller (ABC SBC). It documents network
planning, SBC installation, policy configuration and the best current practices for operating the SBC.

The ABC Session Border Controller (ABC SBC) is a SIP Back-2-Back User Agent (B2BUA) that provides op-
erators and enterprises with a scalable session border control solution for secure connections with Voice over IP
(VoIP) operators and users. With the ABC SBC VoIP service providers and enterprises deploy a session border
controller that is designed to run on top of high end hardware as well as appliances and virtual machines. Thereby,
the ABC SBC enables VoIP providers to gradually scale up their infrastructure and covers the needs of enterprises
of all sizes.

The ABC SBC provides the following features:

• Infrastructure Security: The ABC SBC serves as the first line of defence, fending off attacks coming over
the Internet, hiding internal topology, applying rate limits and performing Call Admission Control, limiting
number of parallel calls and call length, and off-loading registrar and registration throttling.

• Confidentiality. The ABC SBC implements cryptographic protocols TLS and SRTP that make it incredi-
bly hard for unauthorized third parties to intercept VoIP calls. Secured telephony is possible even without
exotic telephones using off-the-shelf webRTC browsers (See the next point). The ABC SBC can also com-
bine cryptographically secured RTC telephony with traditional policy-based IT practices like VPNs, so that
confidentiality can be achieved in a practicable end-to-end way between all kinds of equipment.

• Browser Telephony. The ABC SBC includes a built-in SIP/WebRTC gateway. The gateway allows users
to interconnect WebRTC browser telephony with SIP telephony and even PSTN telephony users behind
SIP/telephony gateways. The browser telephony allows for easy integration with web applications and pro-
vides a level of privacy previously unprecedented before in fixed and mobile networks.

• Network Functions Virtualization (NFV). The ABC SBC also comes in a virtualized form that allows admin-
istrators to run the SBC without managing the physical infrastructure. More than that, a whole auto-scaling
load-balanced RTC gateway cluster can be started in Amazon Elastic Cloud by a single button using the
Cloud Formation launching facility. Such a cluster adapts to network conditions, growing and shrinking
with network traffic. It can be geographically dispersed for best QoS worldwide and it can be launched in
less than five minutes – compare that to the effort of placing your own equipment in multiple geographically
distributed air-conditioned data-centers!

• Mediation: The ABC SBC connects disconnected unroutable networks and VLANs, different transport pro-
tocols, secured and plain RTP, facilitates NAT traversal, steers codec negotiation, translates identities and
adapts SIP headers and bodies for best interoperability between incompatible devices and networks policies.

• Rapid IT integration. The ABC SBC dramatically reduces the time-to-deploy. Studies show that in the
vast majority of new network deployments inadequate time and cost is spent in designing data integration
concepts. ABC SBC reduces the time-to-deploy with its built-in integration capabilities. Administrators
can place external logic to web-servers and govern how the SBC behaves through a RESTful interface.
Large amounts of pre-provisioned data can be used to govern the SBC logic, such as routing tables, peering
characteristics, SIP bulk registration, blacklists or whitelists, or subscriber information.

1

FRAFOS ABC SBC User Guide, Release 5.5.2

• SIP Routing: The ABC SBC’s competitive design allows administrators to route SIP traffic based on any
message element. Routing methods like source-based, destination-based, least-cost-route based, proprietary-
header-field-based and others can be easily configured and cascaded behind each other to find the most-proper
destination for SIP traffic.

• Real-time monitoring. The ABC SBC allows its administrator to permanently know what is going on in their
SIP networks. Due to the centralized nature of SBCs, the ABC SBC enables you to gain deep insight into
the traffic it steers and constantly reports on it using “events” and “Call Detail Records” (CDRs). This data
can be further used to perform troubleshooting, backwards analysis and future predictions of the system as
whole as well as that of its individual users. The ABC SBC also reports on its status using Prometheus and
SNMP (legacy).

• Media processing: The ABC SBC includes built-in audio recording, transcoding, announcements and con-
ferencing.

• Web management. Remote management allows rapid and convenient adaptation to ever changing network
conditions. ABC SBC’s policies can be easily changed through the web interface.

• Non-stop service. The ABC SBC is designed to provide high-availability by running in redundant hot-
standby pairs. Alternate route definitions and built-in monitoring conceal scheduled and unplanned outages
of network elements behind the ABC SBC.

1.1 How to Start?

This book is intended for everyone interested in installing and using the ABC SBC. Knowledge of SIP, RTP and
IP networking is of an advantage and would ease the reading and use of the book. Of essential value is, however, a
good understanding of the VoIP environment in which the ABC SBC is to be deployed. Depending on your goal,
there are these options for how to get the most out of this book in the shortest time:

• Cloud RTC Trial: Trialing the RTC gateway using amazon Elastic Cloud allows you to start the WebRTC/SIP
gateway service within minutes and establish connectivity between web browsers and an existing SIP service.
See the Section Amazon Elastic Cloud Configuration Cookbook and visit our trial site at https://go.frafos.
com/.

• Installing the ABC SBC: Before installing the ABC SBC it is advisable to go through the practical guide
to have a better understanding of the needed infrastructure. After installing the ABC SBC, the practical
guide can be used for a quick configuration of the solution. In case certain issues need to be solved that are
not covered in the guide, then a look into the reference chapter (Section Sec-Action) will be helpful. The
administrator should also go through the administration, monitoring and security chapters to develop a better
understanding and control of the installed system.

The book is structured in the following parts:

• Introduction: This section provides an overview of the basic technologies addressed here, namely SIP and
SBC. Furthermore, the basic concepts and terminology of the ABC SBC are described. If you are knowl-
edgeable with SIP and VoIP deployments you can skip the introductions to SIP and SBCs.

• Practical Guide to the ABC SBC: This section provides first an overview of what a future user of the ABC
SBC - or actually any other SBC as well - must consider before purchasing and installing an SBC. Moreover,
this guide can be seen as a short cut for configuring and using the main features of the ABC SBC without
having to go through the entire manual.

• Installing: This section covers the steps needed to deploy the ABC SBC. Firstly, one needs to determine
whether to do a complete installation from the FRAFOS repository or to use ABC SBC container version.

• General ABC Configuration Guide: This section provides the details about the different features of the ABC
SBC, what they are good for and how they can be used. For the more complex parts, additional sections with
examples are provided. These example sections are intended as short cuts for solving common issues.

• ABC SBC System administration: This chapter explains a set of features available for the administrator of
the ABC SBC. These features include the capability to create and manage users of the ABC SBC and define

1.1. How to Start? 2

https://go.frafos.com/
https://go.frafos.com/

FRAFOS ABC SBC User Guide, Release 5.5.2

their rights, the list of commands that can be used to run certain tasks that might not be available through
the GUI as well as conduct upgrades and updates of the ABC SBC software.

• Monitoring and Troubleshooting: The ABC SBC collects various measurement values and call traces
and generates alarms. These features provide the administrator of the ABC SBC with the information needed
to detect errors and problems in the processed VoIP traffic as well as in the operation of the ABC SBC.

• Securing SIP Networks using ABC SBC and ABC Monitor (optional): This chapter provides an overview of
the security capabilities of the ABC SBC as well as a guide for configuring blacklists, traffic shaping and
limiting the call duration.

1.2 Credits

The initial version of this book was written by the FRAFOS team with support from Sipwise in a three day Book
Sprint facilitated by Barbara Rühling. The illustrations were provided by Juan Camilo Cruz. This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License .

1.2. Credits 3

http://creativecommons.org/licenses/by-sa/4.0/

Chapter 2

Introduction

2.1 A Brief Introduction to History and Architecture of SIP

The Session Initiation Protocol (SIP, RFC 3261) is a backbone of every VoIP network nowadays. Its “language”
is used by telephony devices to find each other, signal who is calling whom, negotiate which audio/video codecs
to use and even more. The telephony devices are typically SIP desktop phones, but it may be also smartphones,
softphones, or massive PSTN gateways with PSTN infrastructure and users behind them. In between, there are
intermediary SIP network devices that help to locate the end-user devices, perform Call Admission Control, help
often with various imperfections of the end-devices and perform other useful functions. The ABC Session Bor-
der Controller is one of such, however other kinds of SIP proxy servers, Back-to-Back User Agents, specialized
application servers, and more are common.

VoIP began to reach market back in mid nineties. By then Internet had established itself as a consumer product.
The number of users buying PCs and subscribing to an Internet Service Provider (ISP) for a dial-up access was
increasing exponentially. While mostly used for the exchange of Email, text chatting and distribution of information
VoIP services based on proprietary solutions as well as H.323 started to gain some popularity. The standardization
organization Internet Engineering Task Force, IETF, began to devise its own protocol suite. Some protocols existed
already by then. The Real-Time Transport Protocol (RTP) RFC 1889 enabled the exchange of audio and video
data. The Session Description Protocol (SDP) RFC 2327 enabled the negotiation and description of multimedia
data to be used in a communication session. The first applications, often open-source, for sending and receiving
real-time audio and video data emerged. A signaling protocol was missing, however.

In those days, the procedure for establishing a VoIP call between two users based on the IETF standards would
look as follows: The caller starts his audio and video applications at a certain IP address and port number. The
caller then either calls the callee over the phone or sends him an Email to inform him about the IP and port address
as well as the audio and video compression types. The callee then starts his own audio and video applications and
informs the caller about his IP and port number. While this approach was acceptable for a couple of researches
wanting to talk over a long distance or for demonstrating some research on QoS this was clearly not acceptable for
the average Internet user.

The Session Initiation Protocol (SIP) RFC 3261 was the attempt of the IETF community to provide a signaling
protocol that will not only enable phone calls but can also be used for initiating any kind of communication sessions.
SIP has been contemplated for use by audio and video calls, as well as for setting up a gaming session or controlling
a coffee machine.

The SIP specifications describe three types of components: user agents (UA), proxies and registrar servers. The UA
can be the VoIP application used by the user, e.g., the VoIP phone or software application. A VoIP gateway, which
enables VoIP users to communicate with users in the public switched network (PSTN) or an application server,
e.g., multi-party conferencing server or a voicemail server are also implemented as user agents. The registrar server
maintains a location database that binds the users’ VoIP addresses to their current IP addresses. The proxy provides
the routing logic of the VoIP service. When a proxy receives a SIP request from a user agent or another proxy it
also conducts service specific logic, such as checking the user’s profile and whether the user is allowed to use the
requested services. The proxy then either forwards the request to another proxy or to another user agent or rejects
the request by sending a negative response.

4

https://datatracker.ietf.org/doc/html/rfc3261.html
https://datatracker.ietf.org/doc/html/rfc1889.html
https://datatracker.ietf.org/doc/html/rfc2327.html
https://datatracker.ietf.org/doc/html/rfc3261.html

FRAFOS ABC SBC User Guide, Release 5.5.2

While the server roles prescribed by the SIP specification are functional, actual implementations found in networks
tend to integrate multiple roles in a server product. A registrar is often co-located with a proxy server so that they
can share user-location databases. A server can also present itself as User-Agent to both sides of a signaling session
to be able to manipulate SIP messages more extensively than the proxy specification would permit.

Every signaling SIP transaction consists of a request and one or more replies. The three most commonly used
request types are REGISTER, INVITE and BYE. The REGISTER request makes a SIP phone’s address known to a
SIP server so that it knows where to forward incoming SIP requests. The INVITE request initiates a dialog between
two users. A BYE request terminates this dialog. Responses can either be final or provisional. Final responses can
indicate that a request was successfully received and processed by the destination. Alternatively, a final response
can indicate that the request could not be processed by the destination or by some proxy in between or that the
session could not be established for some reason. Provisional responses indicate that the session establishment is
in progress, e.g. the destination phone is ringing.

In general one can distinguish between three types of SIP message exchanges, namely registrations, dialogs and
out of dialog transactions.

Fig. 1: SIP Call flow

A SIP registration enables a user agent to register its current address, IP address for example, at the registrar. This
enables the registrar to establish a correlation between the user agent’s permanent address, e.g. sip:user@frafos.
com, and the user agent’s current address, e.g., the IP address used by the user’s user agent. In order to keep this
correlation up to date the user agent will have to repeatedly refresh the registration. The registrar will delete a
registration that is not refreshed for a while.

A SIP dialog, a call for example, usually consists of a session initiation phase in which the caller generates an

2.1. A Brief Introduction to History and Architecture of SIP 5

sip:user@frafos.com
sip:user@frafos.com

FRAFOS ABC SBC User Guide, Release 5.5.2

INVITE that is responded to with provisional and final responses. The session initiation phase is terminated with
an ACK, see SIP Call flow. A dialog is terminated with a BYE transaction. Depending on the call scenario the
caller and callee might exchange a number of in-dialog requests such as reINVITEs or REFER.

The last type of SIP interactions is SIP transactions that are not generated as part of a dialog. Examples of out
of dialog SIP requests include OPTIONS and INFO that are often used for exchanging information between SIP
nodes or as an application level heartbeat.

Every SIP message consists of three parts: First line, message header and message body, see Content of SIP mes-
sages. The first line states the purpose of the message. For requests it identifies its type and the destination address.
For replies the first line states the result as a numerical 3-digit status code together with a textual human-readable
form. The second part of the message, the header part, includes a variety of useful information such as identifi-
cation of the User Agent Client and the SIP path taken by the request. The third part includes a message body
that contains application specific information. This can be for example session description information (SDP)
indicating the supported codecs.

Fig. 2: Content of SIP messages

The information contained in these three parts can be roughly divided into three categories, see Content of SIP
messages:

• Addressing and routing information: This includes information about who has sent the message and where
it is destined to, the next hop to be sent to as well as the hops it has traversed. This information is included in
the first line as well as in different headers such as From, To, Contact, P-Asserted-Identity, Via, Route, Path
and other headers. The message body can contain information about where the media traffic should be sent
to or is expected to come from.

2.1. A Brief Introduction to History and Architecture of SIP 6

FRAFOS ABC SBC User Guide, Release 5.5.2

• Dialog and transaction identification: This part of a SIP message is used to uniquely identify a SIP dialog
or transaction. This information is included in SIP headers such as Cseq, Call-Id and tags included in From,
To and Via headers.

• Dialog content: With dialog content we categorize data that is included in a SIP message that is either used
to describe certain features of a dialog or indicates how a node receiving the message should process the
message. This can include parts of the SIP message body carrying SDP, which includes description about
which audio or video codes to use. Certain headers such as Privacy for example indicate the user’s wishes
with regard to the way private information such as user address should be dealt with.

2.2 What is a Session Border Controller (SBC)?

Historically Session Border Controllers emerged after publication of the SIP standard as a panacea to early protocol
design mistakes: ignorance of Network Address Translators (NATs), unclear data model, liberal syntax, reluctance
to standardize legal interception and more.

Probably the single biggest mistake in the design of SIP was ignoring the existence of network address translators
(NAT). This error came from a belief in the IETF leadership that IP address space would be exhausted more
rapidly and would necessitate global upgrade to IPv6 which would eliminate the need for NATs. The SIP standard
has assumed that NATs do not exist, an assumption, which turned out to be a failure. SIP simply didn’t work for
the majority of Internet users who are behind NATs. At the same time it became apparent that the standardization
life-cycle is slower than how the market ticks: SBCs were born, and began to fix what the standards failed to do:
NAT traversal.

Yet another source of mistakes has been the lack of a clear data model behind the protocol design. Numerous
abstract notions, such as dialog or session, transaction or contact simply didn’t have unique unambiguous identi-
fiers associated with them. They were calculated or almost guessed out of various combinations of header-fields,
decreasing the interoperability. Some message elements, such as Call-ID, have been overloaded with multiple
meanings. While some of these were fixed in the later SIP revision and its extensions (rport RFC 3581, branch,
gruu RFC 5628, session-id) the market forces jumped in quickly. SBCs began to implement “protocol repair”.

The other class of mistakes emerged from implementations. Many SIP components were built under a simplifying
assumption that security comes for free. Numerous implementations were found to be vulnerable to malformed
SIP messages or excessive load. The SBCs began to play a security role.

The reality in today’s real time communication networks is that, contrary to the end-to-end design of the Internet
and its protocols, service operators can achieve the best user experience by exerting tight control - over the endpoints
and over the interface to peering networks.

Over several years, Session Border Controllers became a de facto standard for which ironically no normative ref-
erence existed. A non-normative information reference on the subject, RFC 5853 was published as late as in
2013. Session Border Controllers nowadays handle NATs, fix oddities in SIP interoperability and filter out ille-
gitimate traffic. They began to incorporate elements of the standardized SIP components. For example, routing
functionality contemplated by the standards for proxy servers is nowadays part of SBC products. Similarly the
SBCs often incorporate media recording and processing functions, whether that’s for quality assurance, archiving
or legal-compliance purposes.

2.2.1 General Behavior of SBCs

Purist SIP call flow depicts the message flow of an INVITE request between a caller and a callee. This is the simplest
message sequence that one would encounter with only one proxy between the user agents. The proxy’s task is to
identify the callee’s location and forward the request to it. It also adds a Via header with its own address to indicate
the path that the response should traverse. The proxy does not change any dialog identification information present
in the message such as the tag in the From header, the Call-Id or the CSeq. Proxies also do not alter any information
in the SIP message bodies. Note that during the session initiation phase the user agents exchange SIP messages
with the SDP bodies that include addresses at which the agents expect the media traffic. After successfully finishing
the session initiation phase the user agents can exchange the media traffic directly between each other without the
involvement of the proxy.

2.2. What is a Session Border Controller (SBC)? 7

https://datatracker.ietf.org/doc/html/rfc3581.html
https://datatracker.ietf.org/doc/html/rfc5628.html
https://datatracker.ietf.org/doc/html/rfc5853.html

FRAFOS ABC SBC User Guide, Release 5.5.2

SBCs come in all kinds of shapes and forms and are used by operators and enterprises to achieve different goals.
Actually even the same SBC implementation might act differently depending on its configuration and the use case.
Hence, it is not easily possible to describe an exact SBC behavior that would apply to all SBC implementations.
However, in general one we can still identify certain features that are common for most of SBCs. For example,
most SBCs are implemented as “Back-to-Back User Agent” (B2BUA).

A B2BUA is a proxy-like server that splits a SIP transaction in two pieces: on the side facing the User Agent Client,
it acts as server; on the side facing the User Agent Server it acts as a client. While a proxy usually keeps only state
information related to active transactions, B2BUAs keep state information about active dialogs, e.g., calls. That
is, once a proxy receives a SIP request it will save some state information. Once the transaction is over, e.g., after
receiving a response, the state information will soon after be deleted. A B2BUA will maintain state information
for active calls and only delete this information once the call is terminated.

Fig. 3: Purist SIP call flow

SIP call flow with SBC depicts the same call flow as in Purist SIP call flow but with an SBC in between the caller
and the proxy. The SBC acts as a B2BUA that behaves as a user agent server towards the caller and as user agent
client towards the callee. In this sense, the SBC actually terminates that call that was generated by the caller and
starts a new call towards the callee. The INVITE message sent by the SBC contains no longer a clear reference to
the caller. The INVITE sent by the SBC to the proxy includes Via and Contact headers that point to the SBC itself
and not the caller. SBCs often also manipulate the dialog identification information listed in the Call-Id and From
tag. Further, in case the SBC is configured to also control the media traffic then the SBC also changes the media
addressing information included in the c and m lines of the SDP body. Thereby, not only will all SIP messages
traverse the SBC but also all audio and video packets. As the INVITE sent by the SBC establishes a new dialog,
the SBC also manipulates the message sequence number (CSeq) as well the Max-Forwards value.

Note that the list of header manipulations listed in SIP call flow with SBC is only a subset of the possible changes that
an SBC might introduce to a SIP message. Furthermore, some SBCs might not do all of the listed manipulations. If
the SBC is not expected to control the media traffic then there might be no need to change anything in the SDP lines.
Some SBCs do not change the dialog identification information and others might even not change the addressing
information.

2.2. What is a Session Border Controller (SBC)? 8

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 4: SIP call flow with SBC

2.2.2 General Deployment Scenarios of SBCs

Session border controllers are usually deployed in a similar manner to firewalls, namely with the goal of establishing
a clear separation between two VoIP networks.

Fig. 5: SBC deployment scenarios

In general one can distinguish three deployment scenarios, see SBC deployment scenarios:

• User-Network-Interface (UNI): Operators use SBCs to establish a secure border between their core VoIP
components and subscribers. The core components consists of PSTN gateways, media servers, SIP proxy
and application servers. Subscribers use SIP hardphones and softphones, Internet Access Devices that con-
nect analog and digital phones to the IP network, and newly web browsers deploying the WebRTC standard.

2.2. What is a Session Border Controller (SBC)? 9

FRAFOS ABC SBC User Guide, Release 5.5.2

Most important administrative tasks in this scenario include facilitation of NAT traversal (see NAT Traver-
sal), achieving interoperability among multiple types of clients (see SIP Mediation), security against attacks
coming from the public Internet (see Securing SIP Networks using ABC SBC and ABC Monitor (optional))
and off-loading registrar (see Section Registration Caching and Handling).

• Network-Network-Interface (NNI): In the NNI interface, two operators connect to each other directly over
SIP. Most important administrative concerns in this scenario include mediation of different network poli-
cies (see SIP Mediation), enforcement of service-level-agreements between providers by traffic shaping (see
Traffic Limiting and Shaping) and multi-provider SIP routing (see SIP Routing).

• Enterprise SBC (E-SBC): Enterprises are increasingly replacing their PBXs with VoIP PBX or are extending
their PBX with a VoIP module to benefit from attractive VoIP minute prices. Enterprise SBCs are used to
secure the access to the PBX. The enterprise SBC is also expected to secure the communication to the
VoIP operator, which is offering the VoIP service to the enterprise. Typical administrative concerns include
harmonization of dialing plans between an enterprise and its trunking partners using the mediation feature
see SIP Mediation), and setting up secured VoIP connectivity for web-users (see Securing SIP Networks
using ABC SBC and ABC Monitor (optional)).

2.3 Do You Need an SBC?

Before installing an SBC it might be worth thinking whether an SBC is needed in the first place. To answer this,
here are a couple of questions:

• will you deal with SIP devices behind a NAT? If the answer is yes then deploying an SBC is most likely the
right choice. While there are already a number of NAT traversal solutions such as STUN RFC 5389, TURN
RFC 5766 or ICE RFC 5245 these solutions either do not solve all issues or require certain extensions at
the end devices which are not always available.

• do you deploy SIP devices that you would not want other users or operators to be able to send SIP or media
traffic directly to? This is usually the case when a PBX or a PSTN gateway is deployed. If the answer is yes
then an SBC would be the right choice as it would hide the IP addresses of these devices and prevent direct
communication to them.

• do you deploy a heterogeneous set of VoIP devices? If yes then an SBC can be the proper point in the network
to fix interoperability issues by normalizing the traffic and solving issues created by protocol implementation
peculiarities.

• do you want to protect your VoIP devices from Denial of Service attacks? If there is the danger that an
attacker might overload your network and VoIP devices by generating a large amount of SIP requests and
RTP packets then an SBC would act as a first line of defense and filter the malicious traffic before it reaches
the core VoIP components.

• do you want to reduce the possibilities of fraud? If there is a danger that a fraudulent user might try to make
more calls than allowed then an SBC would be the best approach. With an SBC it is possible to reliably limit
the number of calls made by a user.

• do you want to protect your users from a bill shock? When a user calls an expensive number and fails to
terminate the call in a proper manner then he will most likely get a shock when receiving the bill for a call
lasting for hours. An SBC on the border of the network can be configured so as to cut calls after a certain
period of time and hence limit the damage.

• will you need to transcode the media? If different users are using different codecs - which is especially the
case when connecting mobile to fixed networks - then media transcoding will be needed. Media transcoding
is often an integral part of SBCs.

• will your users be using browser telephony using WebRTC? Then you need to connect them to the rest of
SIP world and SIP-PSTN gateways using the built-in WebRTC gateway.

2.3. Do You Need an SBC? 10

https://datatracker.ietf.org/doc/html/rfc5389.html
https://datatracker.ietf.org/doc/html/rfc5766.html
https://datatracker.ietf.org/doc/html/rfc5245.html

FRAFOS ABC SBC User Guide, Release 5.5.2

2.4 ABC SBC Networking Concepts

This section provides an overview of the main concepts and terms of the ABC SBC. It shows the overall model of
SBC-managed networks, how the SBC connects to the individual networks using “Interfaces”, models SIP devices
as “Call Agents”, and groups these in “Realms”. Eventually A-B-C rules are described that define how the ABC
SBC manages SIP traffic as it passes through it.

2.4.1 Network Topology

As depicted in the Figure ABC SBC Concepts Overview, the ABC SBC communicates with VoIP phones, media
servers and other entities that act as SIP user agent. We call these entities Call Agents (CA) and group them into
so called Realms. The ABC SBC associates rules with Call Agents and Realms. These rules fully describe how
every single session traversing the ABC SBC from one CA/Realm to another is processed.

The rule processing occurs in three steps. When receiving a SIP message from a Call Agent, the ABC SBC will first
execute inbound rules (“A-Rules”) associated with the Call Agent and the Realm it belongs to. These rules typically
implement all kinds of admission control. Once the message is accepted the ABC SBC applies routing rules (“B-
Rules”) to determine the Call Agent where to send the message to. Before actually forwarding the message to the
destination, the ABC SBC executes its outbound “C-rules”. The C-Rules are typically used to transform the SIP
messages to conform to practices used by the destination, such as local specific dialing conventions.

Fig. 6: ABC SBC Concepts Overview

2.4.2 SBC Interfaces

SBC Interfaces define how the ABC SBC connects to the adjacent IP networks. They are are an abstraction layer
on top of the network interfaces. Specifically, the SBC Interfaces define through which IP addresses, port numbers
and network interfaces the ABC SBC offers its services.

There are the following types of SBC interfaces:

• Internal management (IMI): used in high availability (HA) and cluster setups as the communication channel
between the SBC node servers and between CCM and SBC nodes.

• Media (MI): used for receiving and sending media payload.

• Signaling (SI): used for receiving and sending SIP signaling messages.

• Websocket Signaling (WS): used for receiving and sending SIP over websocket from and to WebRTC clients.

• Custom Interface (CI): used for different applications depend on admin (e.g. SSH, SNMP, HTTP
proxy/redirect)

Each of the SBC interfaces is mapped to a physical or system network interface that is used for the actual sending
and receiving of the data. Multiple SBC interfaces can be mapped to the same network interface. If VLANs are
used, they are administered under management of physical interfaces and remain otherwise transparent to the rest
of the system.

Administration of the SBC interfaces is described in the Section Interface Configuration.

2.4. ABC SBC Networking Concepts 11

FRAFOS ABC SBC User Guide, Release 5.5.2

2.4.3 Call Agents

Call Agents (CA) are the smallest type of peering entities the ABC SBC can differentiate. They represent logical
end-points. They can be defined based on several addressing mechanisms:

• IP address and port

• Domain or host name and port

• IP network and mask

Additionally, a Call Agent is assigned to a signaling and a media interface. These interfaces are used whenever
SIP signaling or media packets are sent to or received from a Call Agent.

For security reasons, the SBC communicates by default only with well-known and defined Call Agents. When an
incoming SIP request cannot be attributed to a Call Agent, it is rejected.

To determine the source Call Agent, the SBC uses the source IP address and port of the request to search among
the configured Call Agents. If the definitions of Call Agents are overlapping (for example when some Call Agents
are defined with an IP address which belongs to a subnet used to define another Call Agent), the following descend-
ing order is used to determine the Call Agent:

• Call Agents with matching IP address and port.

• Call Agents with matching IP address but a port equal to 0.

• Call Agents with matching IP network (including mask) in descending order of mask length

Routing rules determine the target Call Agent. In this case, the interface used to send the SIP signaling is the one
assigned to the target Call Agent. In case media relay is used, the media interface assigned to this target Call Agent
is also used accordingly. The target Call Agent is used to determine the set of applicable rules on the outbound
side as well. Note that Call Agents specified by subnet address cannot be used for routing.

2.4.4 Realms

Every Call Agent belongs to one Realm. Realms are the logical groupings of one or more Call Agents. They allow
multiple Call Agents to share the same SIP processing logic without defining it individually multiple times.

In a classical context where the SBC is placed on the border of an internal network, it is common to define one
Realm for the outside world, and one for the internal network. This way, all the restrictive rules to protect the
internal network are defined for the outside Realm, while the internal one can be safely trusted.

In a peering use case, usually one Realm per peering partner is defined.

2.4.5 A-B-C rules

The ABC SBC is fundamentally rules driven. This means that almost all features can be activated based on certain
conditions evaluated at run-time, based on parts of the signaling messages or media payload.

All rules are constructed using the same pattern. They consist of a set of one or more conditions. If all conditions
apply (logical conjunction), a set of one or more actions is executed.

It is important to understand that rules are generally applied only on dialog-initiating requests or out-of-dialog
requests. However, some actions have a scope that goes beyond these dialog-initiating requests or out-of-dialog
requests. For example, header filters apply to all requests exchanged, including in-dialog requests. Action descrip-
tions include their scopes where applicable.

There are three types of rules that are always executed in the same order: A, B, and C. A-rules describe how
incoming traffic for a Call Agent/Realm is handled, B-rules determine destination for the SIP request, and C-rules
describe SIP processing behavior specific to that chosen destination.

A and C rules are associated with Call Agents and/or Realms. The realm rules allow to have shared logic for all
Call Agents that are to be handled the same way, while CA rules are suitable for individual logic. Often, rules

2.4. ABC SBC Networking Concepts 12

FRAFOS ABC SBC User Guide, Release 5.5.2

are associated with both Realms and Call Agents. The Realm rules are executed first, and their results can be
overridden by more specific Call Agent Rules.

B rules are different in that they are global. They are not associated with a specific realm or call agent. When
processing of A-rules completes, the B-rules determine the next hop. That’s is the only action the B-rules can
perform. Then Realm and Call Agent specific C-rules are processed.

The FRAFOS ABC SBC handles calls according to the schema shown in the figure Call handling algorithm.

Fig. 7: Call handling algorithm

It is a good practice to place rules in realms rather than in Call Agents, unless they are clearly specific to Call
Agents. Rules in realms don’t have to be repeated Call Agent by Call Agent and don’t expose administrator to

2.4. ABC SBC Networking Concepts 13

FRAFOS ABC SBC User Guide, Release 5.5.2

Copy-and-Paste administrative errors.

Conditions and Actions

Fig. 8: Rule evaluation sequence

Every A/B/C rule may have one or multiple conditions. The conditions can check incoming message content
(method, R-URI, headers, codecs), source (IP, port, realm), values stored in call variables etc.

Rules have zero or more actions. If all its conditions are satisfied (‘AND’ combination), the actions of a rule are
executed in the order in which they are defined. In case a rule does not contain any conditions, the rule’s actions
are always applied.

Actions can have parameters depending on the action type. For example, the action “Add Header” that appends a
SIP header to an outgoing message takes two parameters - a header name and a header value.

Within a rule set (Realm A or C rules; Call Agent A or C rules), the SBC evaluates each rule by evaluating the
condition set first. If all conditions match, the set of actions is executed. As part of the rule definition a “continue
flag” is defined. If the “continue flag” is checked, the next rule is evaluated. Otherwise, the rule evaluation within
this block stops. Irrespectively of the state of the “continue flag”, the rule evaluation continues with the next block.

2.4. ABC SBC Networking Concepts 14

FRAFOS ABC SBC User Guide, Release 5.5.2

This means that if the “continue flag” is not checked in a Realm A rule where the conditions match, the Call Agent
A rule will still be executed, see Rule evaluation sequence.

Routing rules

Routing rules have the same set of conditions as A & C rules, but only one possible action: route the request to a
target Call Agent.

Fig. 9: B-Rule evaluation

The essential role of B rules is to determine to which target Call Agent the processed request will be sent to. This
also influences the outbound signaling and media interface used to send out the forwarded request.

To determine a target Call Agent, the SBC will evaluate the conditions for each routing (B) rule. Once a match is
found, the Call Agent associated with the routing rule is determined as the target Call Agent. Then, the processing
continues with the C rules assigned to the target Call Agent.

As depicted in Figure B-Rule evaluation, all active B rules are traversed and evaluated sequentially. In case all
conditions of a rule are satisfied, the destination call agent and routing method are successfully determined. In
case that the conditions of a rule are not satisfied, processing continues with the next rule. If no matching routing
rule can be found, then the call is refused with a 404 Not Found error code and an error event type is produced.

2.4. ABC SBC Networking Concepts 15

Chapter 3

Practical Guide to the ABC SBC

3.1 Network Planning Guidelines

This section provides you with a list of steps every network administrator shall walk through carefully before
deploying an SBC-powered network. Early planning helps to create robust network that well serves the needs of
its users and make administrator’s life free of surprises.

Each planning step starts with a question about a particular network planning aspect. Administrators need to to
ask themselves this question to determine their configuration needs. It is then followed by a short debate of the
most important configuration options and trade-offs. Not all available options are included, yet those present are
of major importance and shall be answered in the early planning phase.

The subsequent section includes a checklist that reiterates question raised in the section. We recommend going
through it thoroughly before a deployment is commenced, and also completing the answers in the “Customer Site
Survey” document available from our customer care.

The steps in this section are grouped as follows:

• The Section Topology Model describes how an ABC SBC connects to the IP networks, how it models SIP
devices and groups them administratively.

• The Section SBC Logic describes the anticipated behavior of the ABC SBC and what needs to be considered
when configuring it: routing, media processing, NAT handling, and more.

• The Section Security Policies summarizes configuration steps needed to protect both the connected SIP
networks and the SBC itself.

• The Section Capacity planning provides guidelines for estimating the SBCs cluster dimensions.

• Eventually the Section IT Integration discusses the configuration steps that need to be considered if the SBC
connects to other network management elements.

3.1.1 Topology Model

The key function of the SBC is to securely connect various SIP elements and peering networks together. This is not
trivial because the networks and devices may use different security policies, SIP protocol extensions, dialing plans,
codecs, etc. To deal with this variety the SBC uses a network model in which the SIP devices are represented as
abstract “Call Agents” that are grouped in “Realms”. With Call Agents (CAs) and Realms there are rules associated
that characterize how their traffic from and to them is treated.

The topology planning process includes the following steps:

16

FRAFOS ABC SBC User Guide, Release 5.5.2

IP layer topology

To which IP networks does the SBC connect?

The first step in defining your topology is located at the IP layer: you have to specify which IP networks connect
with each other and how the SBC connects to them. This is captured in the specification of “interfaces”.

Interfaces describe in detail how an SBC connects to IP networks. In the simplest case all traffic can be routed
through a single Ethernet card using a single IP address and dedicated UDP port range. Many deployments use
multiple Ethernet cards or VLANs to connect two or more physical networks with different levels of security.

A widely used practice we recommend is use of three network cards for three networks: unprotected public, pro-
tected private, and highly-protected administrative. Then for example residential SIP phones and peering providers
connect to the SBC over the public network, operator’s PSTN gateways are located in a private IP subnet, and ad-
ministrators access the SBC over the administrative networks.

Note that using fewer cards makes a clean separation and security of traffic more difficult and also reduces total
throughput.

More detailed discussion of interface configuration is described in Section Physical, System and SBC Interfaces.

IP layer security

Which firewall rules shall be used in firewalls and the SBC?

Once the IP connectivity is specified, you need to specify L3/L4 restrictions for your deployment. This consists of
two parts: if you deploy additional L3/L4 firewalls in front of the SBCs you must make sure that they do not restrict
legitimate traffic. You must allow SIP traffic (typically UDP/TCP port 5060), and if media anchoring is used also
unprivileged UDP ports. On the SBC you may take the opposite approach and restrict critical ports, especially if
no L3/L4 firewall is used. At least you shall make sure that traffic to privileged ports used for administration is
permitted only from trusted IP addresses.

More can be found in the Section Manual IP-layer Blocking .

Call Agents (CAs)

What SIP Devices does the SBC talk to?

Identify CAs by IP address, IP address range or DNS name. A CA may be physically a PSTN gateway, a whole
“cloud” of identical IP phones located in a subnet, a peering party, just anything with unique identification and
characteristics. Also specify if there is some specific treatment a CA shall obtain and that needs to be specified in
SBC rules. These frequently include:

• traffic limitations, i.e. will you impose one of these constraints on the traffic: RTP bandwidth, signaling rate,
number of parallel calls?

• mediation rules, i.e., do you to reconcile dialing plans, identity (URI) usage, header usage? Note that some
of these rules cannot be easily planned for ahead of time as they are used to fix protocol imperfections
discovered after fact in operation.

• NAT handling, i.e. does presence of NATs necessitate use of media relays, and shall the SBC handle traffic
symmetrically? (normally the answer is yes to both these questions if there are NATs present).

More details about traffic limitations are described in the Section Traffic Limiting and Shaping, mediation is de-
scribed further in Section SIP Mediation and media anchoring is described in more detail in the Sections NAT
Traversal and Media Anchoring (RTP Relay).

3.1. Network Planning Guidelines 17

FRAFOS ABC SBC User Guide, Release 5.5.2

Realms

What SIP Networks does the SBC talk to?

Most CAs belong to an administrative zone, whose traffic the SBC handles the same way. It would be impractical
to define traffic rules for every single CA in such a zone. Therefore the SBC uses the concept of Realms that group
all CAs sharing the same characteristics. For example a total bandwidth maximum restriction may be applied to a
whole cluster of peering partner’s PSTN gateways modeled as a Realm. Also identical header-field manipulation
and routing may be applied to all the machines in a Realm. Therefore the administrator needs to assign CAs to the
Realms and associate the common rules with the Realm. The functionality of Realms’ rules is the same as for CAs.

3.1.2 SBC Logic

It is important to plan what the SBC will actually do for your network in precise terms because particular features
have further impact on capacity planning, integration with other components, interoperability and administration.

Routing

What will be the routing criteria used in your network?

Routing is a mandatory part of every SBC configuration. Once the topology is established, you must define how
traffic flows between the Realms and Call Agents. That is described in routing tables. The key decision to be made
is what is the criteria used to determine the next hop for a new session. The most common examples of criteria
include:

• prefix-based routing. This is frequently used when you have a number of PSTN gateways serving different
regions. Technically you match area codes against beginning of the user-part of the request URI.

• source-based routing. This is frequently used when you connect multiple IP networks and want to make sure
that all traffic from one network is forwarded to the other and vice versa. The criteria is then the source IP
address, source Call Agent or Realm.

• method-based routing. Sometimes specialized servers are used for processing specific traffic, like message
stores for keeping messages for off-line recipients.

• The SBC configuration options include even more criteria and these can be also combined with each other.

Some functionality is only present in some deployments and whether to use it or not depends on used equipment,
network characteristics and network policies. More information about administration of SIP routing may be found
in the Section SIP Routing.

Media Anchoring

Do you need the SBC to anchor media so that all RTP traffic visits your site?

The ideal answer is no due to latency and bandwidth concerns, the most common answer is yes due to NAT traversal
and controlling media. Relaying media costs considerable bandwidth and implies more SBC boxes. Yet if any of
the following conditions applies, you will have to enable media relay:

• There are SIP clients behind the NATs. That’s the common case in residential VoIP.

• You wish to record calls. Obviously you can only record media that visits the SBC.

• You want to implement topology hiding consequently and make sure that no party sees media coming from
any other IP than that of the SBC.

• The SBC connects two networks that are mutually unroutable.

More administrative details can be found in the Section Media Anchoring (RTP Relay).

3.1. Network Planning Guidelines 18

FRAFOS ABC SBC User Guide, Release 5.5.2

Media Restrictions

Do media-restricting rules need to be placed?

The need for media restrictions arises mostly when bandwidth is scarce. This may be the case if media anchoring
is used on a link from/to the SBC or on the SBC itself. It may be also the case on the link to the client, particularly
if it is a mobile one.

The simplest solution is to restrict media negotiated by Call Agents by putting desirable codecs on a whitelist. All
other codecs will be removed from codec negotiation. It may happen though that the resulting codec subset is
empty and the Call Agents would not be able to communicate with each other.

If there are no codecs left, you may extend the codec set by transcoding. The SBC then adds additional codecs to
the negotiation process and if the Call Agents choose it, the SBC will convert media to the chosen codec. The
penalty that needs to be considered is degraded throughput of the SBC.

In addition to the codec-based proactive bandwidth saving approach, the SBC can also limit bandwidth retroactively
and put bandwidth limits on CAs or Realms (or some portions of its traffic). This helps to stay on the bandwidth
budget even if SIP devices exceed traffic signaled in SIP. However, it remains a reactive measure. That is, it does
not prevent excessive traffic, it just drops it and impairs the affected media streams.

Codec handling is described in the Sections Media Type Filtering, CODEC Filtering, CODEC Preference and
Transcoding, administration of media limits is described in Section Traffic Limiting and Shaping.

Registrar Cache

Does the SIP traffic include REGISTER messages?

If so, we recommend that you do enable registrar cache. The cache is optimized to reduce the REGISTER traffic
that is passed down to the registrar. This is particularly important if the clients are behind NATs. Then the cache
must be configured to force SIP clients to re-register every minute to stay connected from behind NATs. Also the
ability to track registration status of users allows the SBC logic to differentiate call processing for online and offline
users. This can be used for example for voicemail routing.

Further administrative details are described in the Section Registration Caching and Handling.

NAT Handling

Are there some CAs behind NATs?

If so, you not only have to anchor media as described above, but also make sure that the signaling protocol traverses
NATs successfully. Also registrar-cache must be used to force clients to refresh their connectivity using frequent
re-registrations. Some deployments with STUN-capable SIP phones also set up a STUN server to assist these
phones.

NAT configuration is described in further details in Sections NAT Traversal and Media Anchoring (RTP Relay).

SBC High Availability

Shall the SBC be operated in high-availability mode?

While this is normally the case, small enterprise deployments may prefer buying and administering fewer boxes.
Introducing high-availability requires a standby spare machine for every active SBC and effectively doubles the
number of machines.

It is recommended that in a high-available configuration setup an administrative network is used for internal inter-
node communications and the availability protocol used between the machines in the active/standby pair.

More administrative details about HA mode are available in the Section hamode.

3.1. Network Planning Guidelines 19

FRAFOS ABC SBC User Guide, Release 5.5.2

Downstream Failover and Load-Balancing

Shall the SBC seek alternative destinations when primary destinations become unavailable?

Handling downstream failover may or may not be needed. For example if the downstream telephones are single-user
SIP telephones, there are usually no backup devices. Some high-density devices like PSTN gateways implement
automated failover in a way which is invisible to the SBC and the SBC doesn’t need to handle it either. However if
the primary destinations have spare backup machines without automated failover, the SBC can still detect a failure
and try the alternate destinations.

If there are multiple alternate destinations, it may be also practical to spread the load among them.

There are several ways how to define a set of alternate destinations and their priorities: it can be defined in DNS
maps or in the Call Agent specification. If the definition is managed in DNS, the SBC resolves DNS names au-
tomatically in compliance with RFC 3263. If using DNS is not practical, the same effect can be achieved by
associating multiple IP addresses with a Call Agent. Additionally, a backup Call Agent may be also associated
with a Call Agent: in that case traffic to the backup destination will be processed by additional C-rules specific to
the destination.

Procedures for determining the next hop are described in Section Determination of the IP destination and Next-hop
Load-Balancing.

Dialing Plan Mediation

Do different CAs and Realms connect to the SBC use different dialing plans?

Often SBCs connecting different sites that use different numbering conventions: short-dials, regional dialing plans,
special services numbers. To enable interconnection of such sites and avoid number overlaps, the SBC must bring
all the numbers to a common denominator, mostly the E.164 numbering format.

More about mediation can be found in the Section SIP Mediation.

3.1.3 Security Policies

Generally, the SBC has two ways for protecting networks: putting various restrictions on traffic and concealing
network internals. The latter is sometimes a double-edged sword as obfuscation of SIP traffic makes it hard to
troubleshoot.

Restricting Traffic from Unwanted Sources

How do you identify and discard illegitimate traffic?

There are several ways the SBC recognizes and drops undesirable traffic.

At the SIP-level you may set a variety of criteria which if it is met results in declining a session request. The
conditions may include:

• unusual message patterns such as User-Agents of a type known to offend other SIP devices, URIs to premium
numbers or simply anything else that can be matched

• unusual traffic patterns, such as call excessive call rate, number of parallel calls, or RTP bandwidth con-
sumptions

• The traffic patterns apply statically to a whole Realm or Call Agent. However they may be also tied dynam-
ically to “traffic from any single IP coming from the Realm” or “traffic to any single phone number”. This
way you could for example impose a Realm condition “maximum one parallel call from a single IP address
to a 900 phone number”.

Additionally, if traffic from some specific IP address begins to take really excessive dimensions, you can drop it
straight at the IP layer before it reaches the SBC logic.

3.1. Network Planning Guidelines 20

https://datatracker.ietf.org/doc/html/rfc3263.html

FRAFOS ABC SBC User Guide, Release 5.5.2

More information about filtering unwanted traffic can be found in Section Police: Devising Security Rules in the
ABC SBC.

Topology Hiding

Do you prefer SIP transparency across networks or concealing network information?

This is indeed an operational dilemma. If you process SIP traffic “by standards”, the traffic will be passing the
SBC with minimum changes. This approach will reveal lot of information about one network to the other: which
IP addresses are being used, which port ranges, what type of equipment and potentially even more. This makes
life easier for attackers seeking security holes in networks and therefore some operators chose to obfuscate this
information.

The penalty for traffic obfuscation is significant however: operators’ administrators will find it similarly hard to
find out what’s is going on in their own networks. That doesn’t make troubleshooting easier. Some complicated
applications in which SIP messages tend to refer to each other (such as in call transfer) may also fail.

The choice to obfuscate or not is eventually to be taken by the operator. The ABC SBC has the following means
of doing that:

• Topology hiding rewrites known SIP header fields in which use of IP addresses is mandatory. The downside
is that troubleshooting becomes more difficult.

• Use of non-transparent mode will rewrite dialog-identifying information: from-tag, to-tag and Call-ID which
in some older implementations also includes IP addresses. The downside is some applications which refer
in protocol to a call may fail.

• Header whitelisting drops all header-fields that may potentially carry additional sensitive information, stan-
dardized (Warning, User-Agent for example) or proprietary (Remote-Party-ID for example). The downside
is that sometimes “a baby can be thrown out with the bath water”, when the header-fields include potentially
useful information.

• Media anchoring can be used to obfuscate where media flows from and to. The downside is high bandwidth
consumption and increased latency if media anchoring wouldn’t be used otherwise.

Additional information can be found in the Sections Topology Hiding, SIP Header Processing and Media Anchoring
(RTP Relay).

3.1.4 Capacity planning

Capacity planning is a key part of the planning exercise. Failure to provision resources sufficiently can lead to
network congestion and low quality of services. Overprovisioning way too far increases cost. The goal is to find
the right measure of network size that serves the anticipated traffic. This section provides rules of thumb to estimate
needed capacity and makes simplifying assumptions about state-of-the-art hardware, “normal” traffic patterns and
no dependencies on external servers. A more detailed discussion of dimensioning can be found in the Section SBC
Dimensioning and Performance Tuning.

Cluster Size

How many SBCs are required for a deployment?

There are two major factors that determine how many hosts you need to serve your traffic: anticipated performance
bottleneck and organization of clusters.

Which bottleneck is the most critical strongly varies with actual traffic patterns and services configured on the SBC.
A rule of thumb for a rough estimate of the performance of the ABC SBC on PC with three-1GB-Ethernet and 12
GB of memory is this:

• If transcoding is used, the bottleneck of a single box in terms of the maximum number of parallel calls which
is about 1000. Otherwise. . .

3.1. Network Planning Guidelines 21

FRAFOS ABC SBC User Guide, Release 5.5.2

• . . . if media-anchoring is used, the bottleneck in terms of the the maximum number of parallel calls which
is about 5000. (Media overhead prevails even over heavy registration load.)

• Otherwise the limit is a call rate of 480 calls per second.

We advice to add at least additional 35% of buffer capacity to deal with variances in hardware performance, in-
creasing traffic patterns, too conservative traffic forecasts and DoS attacks.

Once you determined the per-box capacity, you need to take cluster organization in account. There are the following
three cases:

• a single SBC deployment: no scaling, no high-availability.

• high-available active/standby pair: the pair has still the total capacity of a single box, however it can survive
scheduled and unscheduled outages without service impairment

• high-available cluster: the number of boxes is determined by number of boxes needed to serve the target
capacity, doubled to achieve high availability plus two more boxes for a highly-available load-balancer: clus-
ter_capacity / box_capacity * 2 + 2.

Bandwidth

How much bandwidth needs to be allocated to serve the deployment?

To determine needed bandwidth you need to discriminate between two cases: using SBC with and without media
anchoring. The more bandwidth-hungry case is that with media anchoring. With the most commonly used codec,
G.711, a call consumes 197 kbps bandwidth in each direction.

To determine the maximum bandwidth needed calculate the product of maximum number of parallel calls by the
bandwidth specific to the codec in use, 197 kbps if it is G.711.

Public IP Address Space

How many public IP addresses need to be allocated for an SBC Cluster?

The minimum number is one shared VIP address for every active/standby pair.

3.1.5 IT Integration

An SBC is rarely a standalone component. More often it integrates with other components for the sake of connect-
ing to external policy logic, network monitoring, server naming and others. This section lists typical integration
options you may need to consider for your deployment.

RESTful interface

Does the SBC need to consult an external server for its decision making?

If so, the ABC SBC built-in RESTful query allows to ask an external server how a session shall be handled. This
query possibility allows to integrate external and complicated logic in the SBC which is customer-specific or for
other reasons difficult to integrate with the SBC directly.

See more in the Section RESTful Interface.

3.1. Network Planning Guidelines 22

FRAFOS ABC SBC User Guide, Release 5.5.2

Recording

For various reasons, audio recording may need to be configured. What needs to be integrated is access to the
recorded files. The easiest way is none: the recorded files are stored on local storage and accessed through the
events web-page. Uploading to HTTP may also be used. In either case, some deletion and retention policy must
be created, otherwise the local storage will be soon full.

See more in the Section Audio Recording.

Monitoring

Do you need to see how the SBC is doing?

Of course you do. We suggest use of the optional ABC Monitor as it provides ABC SBC administrators with full
history of users and analytical tools to audit it.

You can also use SNMP at a third-party management console to inspect health of your ABC SBC and the networks.
It is possible to define your own custom counters. See more in the Section Measurements and Monitoring.

Mass Provisioning

Do you need to provision the SBC with lot of repetitive data such as thousands of Least-Cost-Routing Entries?

Then you certainly do not want to provision it rule by rule. Instead you devise one rule and fill it with data. The
actual data can comes over a web interface REST API or RPC.

See more in the Section Provisioned Tables.

Call Detail Record (CDR) Exports

Do you need to access CDRs for sake of charging and reconciliation?

Then you must access the internally produced CDRs.

See the Section Call Data Records (CDRs) for more about CDR location, format and access.

DNS Naming

How do I make the SBCs known to their counter-parts?

While it is possibly to communicate with peer SIP-devices only using IP addresses we recommend that every
single SBC has a DNS name which is communicated as the point-of-contact to its peers. If nothing else, it makes
IP renumbering much easier should it occur.

DNS map entries for SIP servers follow the SRV DNS extension as described in RFC 3263.

3.2 Planning Checklists

This section provides you with a summary of questions raised in the previous section. We urge that you diligently
check all the items before you proceed with commencing an installation.

Topology
• Have you identified all Call Agents present in your network?

• Have you specified additional processing rules for these Call Agents, such as network limits?

• Have you grouped all Call Agents in Realms present in your network?

• Have you specified additional processing rules for these Call Agents such as network limits?

3.2. Planning Checklists 23

https://datatracker.ietf.org/doc/html/rfc3263.html

FRAFOS ABC SBC User Guide, Release 5.5.2

• Have you specified all physical interfaces (Ethernet cards)?

• Have you specified all IP addresses, port ranges, and VLANs to be used on these interfaces?

• If there are firewalls in front of the SBC, have you verified that all needed ports are open?

• Have you verified that IP rules on the SBC restrict traffic to privileged ports from trusted IP addresses only?

SBC Logic
• Have you devised the SIP routing criteria used in your network? How many routing rules do you anticipate?

• Have you devised the routing flows between Realms and CAs?

• Does any of the conditions mentioned necessitate use of media relays?

• If you need to restrict codecs, which codecs shall be permitted and which codecs shall be restricted?

• Do you need to force use of a codec unsupported by a CA using transcoding? Which codec?

• If your SIP traffic includes REGISTER messages, will you enable registrar cache? If so, what will be the
registration interval?

• Does presence of clients behind NATs necessitate use of media-relay, symmetric SIP and registrar-cache?

• Do you plan to set up high-available SBC pair(s)?

• If you use the high-available (HA) SBC pair, do you plan to use an administrative network for the HA
protocol?

• If you need to handle downstream failover, have you devised appropriate DNS maps?

• Does the SBC accept traffic using different dialing conventions? If so, how will you translate between them?

Security
• What conditions do you devise to drop illegitimate traffic? Will you configure IP-based and/or URI-based

blacklists?

• Will you introduce traffic shaping limits: call-rate, call-length, parallel calls and maximum call-length?

• Will all or only registered SIP devices be permitted to make phone calls?

• Will the need to troubleshoot your network easily or the need to hide topology prevail?

Dimensioning
• How many SBCs do you need?

• How many network cards shall each SBC have?

• How many IP addresses do you need?

• How much bandwidth do you need in each direction?

Integration
• Do you plan to use the management components over a dedicated administrative network?

• Is external session decision-making logic using RESTful interface needed? If so, what are the parameters
passed from and to the RESTful server?

• Do you need to mass-provision some configuration data? What is the structure of the data and what size of
tables do you anticipate?

• Do you need to record audio and access it? What is your deletion and retention policy for the stored audio
files?

• Do you need to export CDRs?

• Have you devised appropriate DNS SRV and A entries for all IP addresses?

3.2. Planning Checklists 24

FRAFOS ABC SBC User Guide, Release 5.5.2

3.3 A Typical SBC Configuration Example

Many SBC deployments, especially in smaller networks, follow a simple schema which is given through the network
structure. In this typical network, the SBC bridges between an internal network, where the home proxies, PBXs
and other servers like conference and application servers are located, and the public network, where the user agents
reside. Typically, in such a network the main motivations for deploying an SBC are

• network separation for security reasons

• foolproof and always-working NAT handling

• protection of the core network from high registration load

• protection against fraud by enforcing call limits

• possibility for monitoring and tracing for troubleshooting

This chapter presents step by step how to address these network aspects using the ABC SBC. It assumes an SBC
“sitting” between two networks, a public one with user telephones and a private protected one with operator’s
infrastructure.

3.3.1 Identifying Network topology

Simple as it is in this case, the network topology is shown in Sample network Topology.

Fig. 1: Sample network Topology

What administrator needs to do in this step is configuration of the physical network interfaces and of the SBC-level
interfaces.

The ABC SBC has two physical interfaces, one public connecting to the public networks, here with IP address
10.0.1.110, and one private connecting to the private network, here with IP address 192.168.1.110. The physical
interfaces are configured using procedures described in Section Physical and System Interfaces.

User agents are located in the public network and have IP addresses from any network, and they are configured to
use the public interface of the SBC with the address 10.0.1.110 as proxy (in a real world deployment, this address
would not be a private RFC1918 address, but a public one).

A proxy (or PBX) and a conference (or other application) server are located in the internal network. The ABC
SBC can communicate with the entities in the internal network through its interface in the private network which
has the IP address 192.168.1.110.

The detailed procedure for setting up SBC interfaces is described in Section SBC Interfaces. It links media pro-
cessing, signaling and administration with physical interfaces, IP addresses and port ranges.

3.3. A Typical SBC Configuration Example 25

FRAFOS ABC SBC User Guide, Release 5.5.2

3.3.2 Describing ABC SBC Realms and Call Agents

The network topology is described in the ABC SBC configuration by Realms and Call Agents. Call Agents are
typically consumer or operator SIP devices identified by their IP addresses or DNS names. They are grouped in
networks called Realms whose processing rules they share.

In our example two Realms are created in the SBC: public and internal_network.

Fig. 2: Creation of Realm

Fig. 3: Public and private Realms

In the Realm public, the call agent public_users is created with IP address 0.0.0.0/0, which means that public_users
can have any IP address, or: requests received from any IP address on the public interface will be identified as com-
ing from the Call Agent public_users. The address list can include multiple addresses that are used for routing
(See section Determination of the IP destination and Next-hop Load-Balancing). Also a backup call agent can be
defined here which can be used as alternate destination if forwarding to the primary destination fails. The CA defi-
nition further specifies interfaces used for sending and receiving signaling and media and availability management
information – see Section IP Blacklisting: Adaptive Availability Management for more information.

The call agents could be assigned to SBC nodes and/or config groups. This assignment basically specify what SBC
nodes is the call agent known to.

3.3. A Typical SBC Configuration Example 26

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 4: Create public-users Call Agent

As we have neither defined a specific IP:port for the Call Agent nor a hostname, requests can be routed to that Call
Agent only by Request URI, or by setting the destination IP explicitly in the routing rule.

3.3. A Typical SBC Configuration Example 27

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 5: Public Call Agents list

For the internal realm, the call agents proxy and conference are created with IP addresses 192.168.1.121 and
192.168.1.122:5080 respectively.

Fig. 6: Internal Call Agents list

Provisioning Call Agents Using RPC

It is also possible to provision Call Agents using XML-RPC interface.

The following RPC commands for Call Agent provisioning are available:

• cagents.fetch() - fetch all the Call Agents

• cagents.insert($payload) - insert Call Agent

• cagents.update($payload) - update Call Agent

• cagents.delete($realm_name, $cagent_name) - delete Call Agent

The $payload parameter of the insert and update functions is structure of following format:

{
"realm": "Some_Realm_Name",

(continues on next page)

3.3. A Typical SBC Configuration Example 28

FRAFOS ABC SBC User Guide, Release 5.5.2

(continued from previous page)

"name": "Some_Call_Agent_Name",
"interface": "public_signaling",
"media_interface": "public_media",
"target": SEE_BELLOW
"transport": "UDP",
"backup_ca": {

"ca": "Backup_Call_Agent_Name",
"realm": "Name_of_Realm_Backup_Call_Agent_Belongs_To"

},
"backup2_ca": {

"ca": "2nd_Backup_Call_Agent_Name",
"realm": "Name_of_Realm_2nd_Backup_Call_Agent_Belongs_To"

},
"config_groups": ["Config_Group_Name"]
"attrs": {

"name_of_attribute_1": "value_of_attribute_1",
"name_of_attribute_2": "value_of_attribute_2"

}
}

For call agents identified by subnet, the target should look like this:

"target": {
"subnet": ["0.0.0.0/32"]

}

For call agents identified by IP address or DNS name, the target should look like this:

"target": {
"hosts": [

{ "addr": "192.168.1.1:5080", "weight": 10, "priority": 10 },
{ "addr": "192.168.1.2:5080", "weight": 10, "priority": 20 }

]
}

When updating Call Agent only the realm and name fields are mandatory, They identify the Call Agent to be
updated. If any of the other fields is not specified it is not changed by the update action.

Provisioning Call Agents Using REST API

See details in the description of CCM REST API in API reference.

3.3.3 Configuring Registration Cache and Throttling

REGISTER processing accommodates several goals: off-loading servers behind the SBC, enforcing frequent re-
registration load to keep NAT bindings alive and dealing with REGISTER avalanches caused by different sorts of
outages.

For REGISTER requests coming from the “public side”, the ABC SBC is configured to cache the registrations
using the Enable REGISTER caching action. The cache works as follows:

• For every new registration, it creates an alias, a special unique one-time identifier.

• It saves the original contact along with the alias in the local registrar cache.

• To facilitate NAT traversal, it also saves the IP address, port and transport with which the REGISTER was
received.

3.3. A Typical SBC Configuration Example 29

../../sbc-api/index.html

FRAFOS ABC SBC User Guide, Release 5.5.2

• It may re-adjust re-registration period so that it is frequent towards client for NAT keep-alives and less
frequent downstream for better performance.

• It replaces the Contact in the REGISTER with a combination of the alias and the SBCs IP address:
alias@SBC_IP:SBC_PORT.

This way, the “aliased” contact propagated downstream hides details of NAT-related address translation performed
at the SBC and manipulates re-registration period as needed. The cache entry becomes effective once the REGIS-
TER request is positively confirmed by the downstream SIP element.

Thus, when the REGISTER request is then routed to the registrar (the home proxy, here Call Agent proxy), the
alias@SBC_IP:SBC_PORT is saved as he registered contact address of the user at the registrar.

We define this rule in the A rules of the public Realm, so that it is executed for REGISTER requests coming from
any user agent defined under the Realm.

Fig. 7: Rule A Definition for caching REGISTERs coming from public realm

In order to protect the home proxy from the bulk of the registration load, the action REGISTER throttling is
enabled with a Minimum registrar expiration, i.e., the re-register interval used upstream to the home proxy, set
to the default of 3600 (one hour), while the Maximum UA expiration, i.e., the re-register period for the user
agents, is set to 30 seconds.

In cases where the call agent for the registrar have two destination addresses configured to work in a “round-robin”
fashion (e.g. same priority), it may be desired to force the subsequent re-registers to the same destination. In order
to achieve that, a rule similar to the following can be configured:

3.3. A Typical SBC Configuration Example 30

mailto:alias@SBC_IP
mailto:alias@SBC_IP

FRAFOS ABC SBC User Guide, Release 5.5.2

• A condition “Method Is -> REGISTER”,

• a condition “Register Cache -> Is Registered”,

• a rule “Fetch home-proxy IP”

Figure Register throttling destination binding shows this configuration on GUI.

Fig. 8: Register throttling destination binding

3.3.4 SIP Routing

The SIP routing tables (B tables) define to which Call Agent a call is forwarded. In our example, there are two
cases: calls from the UAs towards the proxy server and calls from the internal network towards the UAs.

Calls from the User Agents are routed towards the proxy with a simple rule. Here we route all calls from the public
realm to the proxy - we might also set a filter on Source Call Agent, which would be equivalent in our case. We
route by setting the next_hop (the destination IP address) directly.

3.3. A Typical SBC Configuration Example 31

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 9: Rule B Definition for the sample network

The next rule specifies routing of all calls from the internal network towards the registered UAs. If the home proxy
wants to send a call to a user, it finds in its registrar database the alias@SBC_IP:SBC_PORT as contact for the user,
thus it sends the call to the SBC with the alias in the request URI like this: INVITE sip:alias@SBC_IP:SBC_PORT.

In the SBC, we use the action Retarget R-URI from cache (alias) to look up the UAs IP and port values and set
the request-URI to it. We also use the Enable NAT handling and Enable sticky transport options to handle
NATs properly. Using these options the SBC will send the request to the IP and port where the REGISTER request
was received from and using the same transport protocol it was received on.

3.3. A Typical SBC Configuration Example 32

mailto:alias@SBC_IP
sip:alias@SBC_IP:SBC_PORT

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 10: Rule A Definition for internal CAs

We can then use the R-URI to determine request’s destination. For simplicity, in this example we define a catch-all
routing rule for the complete internal network, which includes all call agents defined there. (We may also define
special routing rules for the different call agents in the internal network if they would have to be treated separately,
e.g. if some calls need to be sent to a peering partner.)

3.3. A Typical SBC Configuration Example 33

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 11: Rule B Definition for internal-network Realm

3.3.5 Configuring NAT Handling and Media Anchoring

We have already used the NAT option in the Retarget R-URI from cache (alias) action above. In order to route
in-dialog requests to the caller properly even if the UA is behind NAT, we use the Enable dialog NAT handling
action. This will make the SBC remember the source address of the caller for the dialog and use that to send
in-dialog requests.

3.3. A Typical SBC Configuration Example 34

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 12: Rule A Definition for NAT handling

For the RTP to flow properly through different NATed users - and also from the internal network to the public
network for calls to conference bridge server - we Enable RTP anchoring with the Media far end NAT traversal
for UAC option enabled. To anchor the RTP of all calls at the SBC, we leave the Enable intelligent relay option
unchecked; if we want to reduce bandwidth consumption and latency (total mouth-to-ear delay), we can also enable
the intelligent relay option if we are sure that no users are behind double NATs. We enable this for calls in both
directions - from and to the UAs.

3.3. A Typical SBC Configuration Example 35

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 13: RTP Anchoring Rule Definition

Note well: it is important to realize that enabling Media far end NAT traversal for UAC will open a security
weakness subjecting the call to a so called RTP Bleed attack. It can be mitigated partially by using the Lock on
addresses learned from RTP option. Forcing usage of Secured RTP will effectively mitigate this attack as the
SRTP packets will be authenticated prior to the address learning step.

3.3.6 Configuring transparent dialog IDs

If we want to enable call transfers through the SBC, and to simplify troubleshooting, we can Enable transparent
dialog IDs.

3.3. A Typical SBC Configuration Example 36

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 14: Transparent Dialog Rule Definition (A)

3.3.7 Setting up tracing

In the testing phase, we can enable tracing for calls with the Log received traffic action.

Fig. 15: Tracing Rule Definition (A)

In production use we should not forget to disable or remove this rule to protect the privacy of the users and to
reduce processing power and disk space requirements at the SBC host.

3.3. A Typical SBC Configuration Example 37

FRAFOS ABC SBC User Guide, Release 5.5.2

3.3.8 Summary of rules

The rules we have created so far can be seen in the Overview screen. The rules implement so far routing from
the external to the private network and vice versa, recording traffic in PCAP files, NAT handling and registration
caching and throttling.

Fig. 16: Rule list for sample network

3.3.9 Setting Call Limits

In order to reduce the risks of fraud, we can set some limits on traffic coming from the external network as shown
in Figure Limiting calls and traffic:

• a parallel call limit of 10 for calls coming to the realm from the same source IP address ($si)
• a limit of 5 calls coming to the realm from the same user ($fU)

• a limit of call attempts per second (CAPS) of 10 for the calls coming to the realm from the same source IP
address ($si)

• and a limit of 120 kbit/s for every single call coming to the realm - sufficient bandwidth for audio calls only.
For video calls you might want to use a higher value.

For the limits per source IP address, it has to be noted that the limits may apply to a group of users if they are
behind the same NAT. If for example there are enterprise users, we may group them into a separate Realm with a

3.3. A Typical SBC Configuration Example 38

FRAFOS ABC SBC User Guide, Release 5.5.2

different, higher limit and/or group by a combination of IP address and domain name.

We set these limits in calls from the external realm.

Fig. 17: Limiting calls and traffic

3.3. A Typical SBC Configuration Example 39

FRAFOS ABC SBC User Guide, Release 5.5.2

3.3.10 Blacklisting specific IPs and User Agents

We can use a rule to block calls from a specific IP address.

Fig. 18: Blacklisting IP addresses

And also specific User Agent types, for example SIP scans from sipvicious which works if the User Agent header
string is unchanged.

3.3. A Typical SBC Configuration Example 40

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 19: Rejecting calls from certain user agents

3.3.11 Handling P-Asserted-Identity

The P-Asserted-Identity header is usually used within a network to signal the caller, if the identity is asserted, e.g.
if it is signaled from a trusted source.

The P-Asserted-Identity header should usually only be trusted if it was set by some element in the internal net-
work, e.g. by the home proxy after authentication. Hence, for requests coming from an external network it is
recommended to remove the P-Asserted-Identity header*.

3.3. A Typical SBC Configuration Example 41

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 20: Remove P-Asserted-Identity header from untrusted requests

3.3.12 Where to go from here

This section described a typical initial configuration for a simple use case and a simple network topology.

Going further from here, various use cases that are solved with the ABC SBC are explained in various sections of
this document:

• Interworking with various types of PBXs requires often very specific SIP mediation actions which can be
implemented using special rule sets, see Defining Rules and SIP Mediation.

• Quality of calls with the Enterprise trunking use case can be improved by using intelligent RTP relay han-
dling, see Media Handling for more details.

• Mobile clients may benefit from specific codec handling and transcoding. See Media Handling for more
details.

• For more security mechanisms, refer to chapter Securing SIP Networks using ABC SBC and ABC Monitor
(optional).

• Least cost routing can be implemented using Provisioned Tables. See Provisioned Tables for more details.

• For billing, the SBC can generate call data records (CDR). See Call Data Records (CDRs) for more details
on how to use the CDRs and customize them.

• Both usage and the SBC host itself can be monitored through SNMP, see Measurements and Monitoring.

• System administration tasks like backup, maintenance and upgrades are explained in chapter ABC SBC Sys-
tem administration.

3.3. A Typical SBC Configuration Example 42

Chapter 4

Initial Configuration

4.1 SBC Interfaces Overview

The ABC SBC uses five types of logical interfaces for management, signaling and media processing:

• IMI - Internal Management Interface - used for inter-node communication (in HA pair or between CCM and
SBC node)

• SI - Signaling Interface - for SIP signaling (multiple SI interfaces can be configured)

• MI - Media Interface - for media (RTP/RTCP) processing (multiple MI interfaces can be configured)

• WS - Websocket Signaling - for SIP signaling over Websockets.

• CI - Custom Interface - for different applications specified by admin

Important: Before the following initial configuration, it is important to have all physical interfaces used by the
SBC’s logical interfaces configured and working (IP addresses and IP routing). Also, the hostnames of the machines
have to be set, as they are used in initialization scripts and for distinguishing SBC nodes.

4.2 Web GUI Configuration (Cluster Config Master)

ABC SBC has two parts, installed as two separate containers: the configuration master aka Cluster Config Manager
(CCM) which provides configuration GUI web interface, and one or more SBC nodes. Depending on the config
synchronization mode (pull or push), the SBC nodes will either :

• automatically pull new configuration from the CCM

• receive a new configuration request from the CCM

The centrally configured configuration elements include ABC rules, Interfaces, Global Config Provisioned Tables,
Realms, Call Agents, SNMP configuration data and Firewall Rules.

The CCM will ask to create username and password for configuration GUI admin access on first login into GUI.
New GUI user will be created and added to “SBCadmins” GUI group. Minimum password length is 8 characters
and it must not contain spaces.

It will also ask for setting username and password that will be used to authenticate the nodes to the configuration
master when performing configuration pull or node status push. Note that this is different username / password
than for the GUI access. The password must not contain spaces.

All ABC SBC nodes need to know which server is CCM in order to pull automatically new configuration from it.

Perform the following command on all ABC SBC nodes (not on CCM):

% sbc-init-config

43

FRAFOS ABC SBC User Guide, Release 5.5.2

It will prompt for the following settings by default:

• Address of the Configuration Master Server. On SBC nodes provide either IP address or DNS name which
resolves to IP address of the CCM.

• The administrative domain. For usual installations just press Enter to use “default” administrative domain.
For installation where administrative domains are used, enter name of the administrative domain this SBC
node belongs to.

• Node UUID. If it is left empty, then node uuid generated automatically on first start is used. If a specific
node UUID is required, enter it.

• SBC’s certificate and key used for TLS connection between SBC and CCM. It can be left empty in config pull
mode when CCM does not verify client certificates. For configuration push mode or for secured installation,
where client certificate is used when pulling configuration from config master node, enter full path to filename
with the client certificate for the ABC SBC node being configured. The file has to be in PEM format and has
to include both certificate and key in one file. The configuration master will verify the client certificate if the
option “Enable mTLS” is enabled in CCM configuration on “SBC Security” tab (certificate must contain the
TLS Web Client Authentication extended key usage attribute).

• Select if a certificate of the configuration master should be verified by this SBC node. For installation that
uses default TLS profile with automatically generated self-signed certificate choose No, for secured installa-
tion choose Yes. If Yes was selected then provide full path to CA certificate file (in PEM format) in following
prompt.

• Configuration synchronization mode. Select either pull (SBC node pulls configuration from the CCM) or
push (CCM pushes configuration to the SBC node). If push was selected as synchronization mode then
provide IP address to listen on for the node configuration server. Usually the IMI interface IP address should
be used. It is possible to leave this field empty in which case the node configuration server would be listening
on all interfaces. Please note, listening on all interfaces might be a security problem as SBC node might have
public interfaces.

• Username and password that is used to authenticate the access to configuration master when performing the
config pull or the node status push. Use the same username and password as set when the first GUI login to
CCM was performed.

• Optionally the root user password can be set. By default the container comes with no root user password set,
which allows to access the container shell only directly from host system. If e.g. ssh access to the container is
needed, using password authentication, the root user password has to be set. Note: if the root user password
change is needed later, it can be done also using “sbc-passwd” command. This command should be used
instead of usual system “passwd” command, as apart from setting the password it also saves a backup copy
of it to possibly persistent location under /data path, from which the password is recovered automatically in
case of new container start after container replacement with newer version.

4.2.1 Configuration synchronization in pull mode

If pull was selected for the SBC node configuration synchronization, the SBC node should try to pull from the
CCM new configuration every 15 seconds. Please note, the configuration needs to be Activated first before being
pulled by the node.

The process is handled by the sbc-pullconf service.

Note that it’s the sbc-status-checker service that reports the configuration synchronization mode to the CCM.

4.2. Web GUI Configuration (Cluster Config Master) 44

FRAFOS ABC SBC User Guide, Release 5.5.2

4.2.2 Configuration synchronization in push mode

If push was selected for the SBC node configuration synchronization, it is up to admin to “manually push” a new
configuration once it is activated:

• edit the configuration via the CCM web interface

• click the “Activate” button

• once the configuration is activated, the GUI redirects to the config push screen. This screen is also accessible
from System –> Config push

• select one or more nodes to which you would like to push a new configuration, and click on “Push to selected”
button

• if a new configuration should be pushed to all SBC servers then click the “Push to all” button

The process is handled by the sbc-gopi service.

Note that it’s the status-checker service that reports the configuration synchronization mode to the CCM.

In case mutual TLS authentication shall be used, the CCM pullconf certificate must contain the TLS Web Client
Authentication extended key usage attribute. It is also advisable to include the TLS Web Server Authentication
extended key usage attribute.

4.2. Web GUI Configuration (Cluster Config Master) 45

Chapter 5

Setting Up Web Interface Access and User
Accounts

ABC SBC web interface is available at the IP address of CCM (config master) interface and can be accessed using
https URL on port 443 like this: https://192.168.178.178/

For the configuration of ABC SBC please access the IP address of the CCM node. The ABC SBC GUI uses local
browser’s time to display all times and timestamps.

Further information about managing administrative users can be found in the Section User Management.

When user login attempt fails several times, the user account is locked for certain time period. For details please
check Login Parameters. To unlock the account just wait for the configured Blocking period or use following CLI
command from command line:

sbc-user-passwd -u <USERNAME>

5.1 Default User Accounts

The initial username and password for user with admin rights for GUI access is created on first CCM GUI login.
Then the GUI users can be managed via GUI - new users can be added or assigned to groups, as described in the
section User Management.

Group membership defines privileges of the respective users. The following groups come preconfigured:

• ABCMonitorUsers Access to ABC Monitor

• SBCadmins SBC administrators having access to all configuration

• SBCrevisor Read-only access to everything

46

https://192.168.178.178/

FRAFOS ABC SBC User Guide, Release 5.5.2

• SBCrest Access to REST API interface. Note: using this group standalone is useless. You should use it
together with other group specifying which REST API resources the user have access to.

• SBCrpc Access to XML-RPC interface. Note: using this group standalone is useless. You should use it
together with other group specifying which XML-RPC resources the user have access to.

• SBCusers access to SBC related configuration (no rights to system configuration - networking, users, firewall
etc.)

5.1. Default User Accounts 47

Chapter 6

ABC SBC License

By default, the FRAFOS ABC SBC is installed in a demo version, which is limited to 90 seconds call duration,
does not include support for replication, high availability and extension packages. Enabling these features requires
a license file. FRAFOS issues license files according to the agreement between FRAFOS and the customer. The
license file enables features as shown in the table bellow:

Licensing Package Feature
transcoding action: “Activate Transcoding”
recording action: “Activate Audio Recording”
RTC interface: “websocket”
media server action: “refuse call with audio prompt”
high-availability background active/standby replication
monitoring_enabled gathering monitoring information for use in ABC Monitor

In the demo version without proper license set, the respective features are not executed. When the number of
maximum calls is reached, the ABC SBC returns a SIP response “503 Server overload” and, if monitoring is
enabled, issues a “limit” event with reason “licensed session limit reached”. When the maximum duration is
reached, the server terminates the call by sending BYE request to both parties, and if monitoring is enabled, issues
a “call-end” event with originator field set to “internal-disconnect”.

The license file has to be imported to the SBC using the ‘System→License’ link. Using the ‘Insert new license’ but-
ton, the administrator should give a name and selects the proper license file from the local disk by clicking ‘Browse’
button. After applying the changes, the license file is automatically uploaded to the server and loaded.

On Amazon Web Services, the paid-AMI instances download their license files when they start and no additional
license configuration is required.

Important: For HA or a cluster deployment, the license file has to be imported on all nodes.

48

Chapter 7

Interface Configuration

• Physical and System Interfaces

• SBC Interfaces

• Retro Compatibility

7.1 Physical and System Interfaces

System (network) interfaces inside the container can be seen either using the same names as on host, or using
different name, depending on host or macvlan network mode used. If host mode is used, the interface cannot
be configured inside the container, and uses IP address as configured on host. If the macvlan mode is used, the
interface has to be configured inside the container, which can be done by adding a network interface configuration
file in /data/interfaces.d/ directory. The DNS server address can be also configured there. See “man interfaces” for
format details.

Several types, like simple system network interfaces (e.g. eth1), VLAN tagged interfaces (e.g. eth1.100) or bonded
interfaces (e.g. bond0) can be configured and used in the ABC SBC configuration.

7.1.1 SBC nodes

If ABC SBC is installed in HA (active-standby) or cluster mode, the main configuration node should know about
all the SBC nodes. This is required specifically in case the SBC interfaces settings differ between the nodes - e.g.
when the nodes differ in IP address or system interface name used for one interface of the same logical type.

By default, each node has unique node UUID created locally at first container start, and on configuration master
side the node records are added automatically when the nodes pull configuration for the first time. The automatic
adding of node records can be disabled under “Config → Global Config → Misc → Automatically add new nodes”.

In case it is needed to add node records manually, either because automatic adding of node records is disabled or
the records are needed to complete configuration even before the nodes try to pull configuration for first time, it
can be done on the “System → Nodes” GUI screen of the main configuration master node.

For each SBC node, you have to enter it’s node name and node UUID. The node name field is just informational,
and e.g. node hostname can be placed there. The node UUID is either generated on the nodes on first start, or if
specific node UUID is required it can be entered manually when doing the initial node configuration. The node
UUID is used to match the node to node specific settings.

Since ABC SBC release 5.5, a node can have one of two roles: either the standard SBC role or the probe role. If
the SBC role is selected, the deployment type can be set to either “standard” or “aws”. For typical installations,
use the default “standard” value. Use “aws” for deployments on Amazon AWS, which is intended for using HA
under AWS. For more information about probe see app_probe.

49

FRAFOS ABC SBC User Guide, Release 5.5.2

7.1.2 Configuring Virtual IP (VIP) Address (OPTIONAL: in HA mode only)

When deployed in an HA active/standby mode two instances of the ABC SBC nodes will share one or more Virtual
IP addresses. Virtual IP addresses are assigned to the currently active node.

The HA is configured using the “System → HA” screen.

For each pair of HA nodes a “HA group” can be created and the nodes assigned to it using “System → Nodes”, or
the HA group can be created also directly on the Nodes page while adding a new node. This HA group says which
nodes will share the HA VIP IP addresses.

It is mandatory for the nodes in HA group to have IMI interface defined, and they must not use “IP autoconfig”
option on the IMI interface, as the two nodes in HA group use the IMI interface IP address for HA “heartbeat”
between the two nodes.

Under the HA group, you can add one or more VIP - Virtual IP addresses. For the VIP enter the IP address and
optionally (recommended) also a netmask of the IP address. The netmask has to be in CIDR notation (like “24”)
or subnet mask (like 255.255.255.0). If netmask is empty, a mask “32” (meaning single host) will be used.

Optionally, also one or more HA routes can be added, which are bound to a particular VIP address. Such routing
rules will be brought up and down together with the VIP address. For the HA route, the following data can be
entered: Route destination - in form of subnet/netmask, like 192.168.0.0/24, this field is mandatory. Other fields
are optional: Gateway - the routing gateway IP address, Source - the source address to prefer when sending, Table
- table id if policy based routing is used.

The “VRRP router ID” option of the HA group specifies the VRRP protocol’s virtual router identifier, which is
used in VRRP advertisement packets to distinguish multiple HA pairs when sharing the same network. It accepts
values 1-255 and a random value is pre-filled when adding a new HA group. In case there would be conflict of the
ID with some other equipment that also uses the VRRP protocol on the same network, the ID can be edited. Note:
for ABC SBC releases up to 5.4, a hardcoded ID value of 66 was used.

Note: if the global config option “Use also signaling interfaces for vrrp adverts” is enabled, then a range of IDs is
used, starting with the value configured under the HA group, to use unique value for each interface.

Optionally, also a “gateway heartbeating” can be enabled and configured under the HA group properties. When
enabled, the gateway reachability will be periodically checked using “arping” command, and possibly a HA
switchover will be initiated if gateway becomes unreachable on one of HA nodes. The options to configure this
are:

• Gateway address: the IP address of the gateway to check using “arping”

• System interface: Name of network device where to send ARP REQUEST packets. Needs to be set only if
the node cannot find interface to use based on system routing, and if used it implies also using source address
0.0.0.0 for the requests, to be able to ping gateway even if Sbc node has no other IP address than the VIP one
on the subnet towards gateway. Please use only if needed specifically, in usual cases leave empty.

• Number of pings to fail: sets after how many failed pings the gateway will be considered being unreachable

• Number of pings to succeed: sets how many pings have to pass to consider the gateway reachable again

• Ping interval: sets ping interval in seconds

• Ping timeout: sets timeout in seconds, how long to wait for ping answer. (Typically, it takes a bit more than
one second to detect unreachable address, so recommended default value for timeout is 2 seconds.)

• Weight to increase/decrease by: sets weight to modify HA node VRRP priority (default 250) if gateway is
reachable, to make node with higher priority become new HA master. Using value of 0 for the Weight will
make the node go into HA FAULT state if gateway is unreachable, instead of just modifying weight - which
is not recommended, as can lead to both nodes going into FAULT state even if the gateway check would
return false negative result. When modifying this value, please consider also the global config option for the
HA priority, as the sum of priority and the increase value must not get above 254 or below 1.

Once the VIP address(es) are defined, it is possible to select to use VIP and choose particular VIP address when
configuring ABC SBC interfaces using “System → Interfaces” screen. The VIP address can assigned to the SBC
signaling, websocket or media type of interfaces.

7.1. Physical and System Interfaces 50

FRAFOS ABC SBC User Guide, Release 5.5.2

Note: in case a setup is reconfigured to remove HA group and move SBC nodes to use normal IP address instead of
VIP, it may be needed to perform additional config activation for the node which was previously acting as BACKUP
in HA, as the signaling process will come up only on a node that was previously acting as MASTER in HA setup.

Before proceeding with the CCM configuration, please ensure that the following requirements are met for the High
Availability (HA) setup on the AWS platform:

• Under Global Config, AWS access keys must be configured as SBC requires an access to configure VIPs on
AWS platform.

• One private IP should be available in SBC interface (VPC) network, this IP address should not be assigned
to any existing interface as it will be used as the secondary IP (VIP)

• If the interface requires to communicate to public area, then an Elastic IP should be created but not allocated
to any interface.

• The Elastic IP must be set also in the Public IP address field within the CCM interface configuration.

• On AWS side, metadata service of SBC instance must be enabled and IMDSv2 must be marked as required.

7.2 SBC Interfaces

For signaling and management the ABC SBC uses several types of “logical” interfaces:

• IMI - Internal Management Interface -
the IMI is used for inter-node communication (in HA pair or between CCM and Sbc node) and for
configuration transfer from configuration master to | SBC| node(s). Only one IMI can be configured.
Separate system interface using IP subnet not routed or accessible from outside should be used for
IMI, unless there is a external firewall in front of ABC SBC. The port number accessible on IMI for
the config pull from configuration master is 444. It is mandatory to create the IMI interface.

Note: There are also several services providing API on Sbc side on IMI interface, to which the CCM node connects
for getting local monitoring, webconference and logs data. The access to these API ports is limited to CCM node
src IP address by Sbc firewall. It is important that there is no NAT involved on traffic between the CCM and Sbc
nodes.

• SI - Signaling Interface - SI is used for SIP signaling. Multiple SI can be configured.

• MI - Media Interface - MI is used for media (RTP, UDPTL, ..) processing and relay. Multiple MI can be
configured.

• WS - Websocket Signaling - WS is used for SIP signaling over Websockets. This is useful only if the ABC
SBC is configured to act as RTC gateway as described in Section SIP-WebRTC Gateway.

• CI - Custom Interface - CI is used for different applications which can be used for specific purposes like
SSH, Prometheus pull service, TURN, HTTP proxy and HTTP redirect.

Signaling and media interfaces can be configured in different combinations. All SI/MI can share the same system
interface, can be configured on a “per Call Agent” basis where each Realm has its signaling and media interface,
or can share one assigned IP address with different ports per SBC interface.

It is also possible to create separate signaling and media interfaces on the same system interface for different
purposes. For example, one for a PSTN gateway and one for receiving calls from residential users. In this case,
a different signaling port and media port range shall be used. A typical ABC SBC configuration is to have one
separate IMI and one shared signaling and media IP address for each Realm.

When doing the initial ABC SBC configuration, add IMI interface. The IMI interface has to be defined always if
HA or cluster mode is used (otherwise needed firewall rules would not be set).

Then add the interfaces for the SBC application: signaling (SI) and media (MI), optionally websockets signaling
(WS).

If a specific application is needed, custom interface (CI) can be used with any port requested by admin.

7.2. SBC Interfaces 51

FRAFOS ABC SBC User Guide, Release 5.5.2

When adding logical SBC interface, you first define it’s name and options that are common to all SBC nodes using
this interface, then you add records under the logical interface which map it to system interface for node(s) that will
be using this logical interface. The list of records that map logical SBC interface to system interface on node(s) can
be expanded or collapsed using the “+” or “-” icon before interface name. New mapping of logical SBC interface
to system interface can be added using the “insert new system interface” button located at left hand side of the list.

In HA or cluster mode, if the interfaces differ between the nodes (use different IP address or system interface name),
you have to create more separate logical to system interface mapping entries under the logical interface. Create a
separate entry for each SBC node, set owner type to Node and select the node under Owner. Note: if records both
for all nodes under a config group (owner type of config group selected) and for specific nodes are created, each
node will use the record for all only if specific record for that particular node does not exist.

If the SBC interface settings do not differ between nodes, you can create just one logical to system interface mapping
entry under each logical interface, set Owner type to config group and use the “default” config group.

If SBC interface is going to use VIP address (shared IP), the VIP address should be added before adding the
interface.

SBC Interfaces are configured in the “System → Interfaces” screen.

The following parameters can be defined for logical SBC interface:

• Interface name: a unique identifier of the logical interface - [a-z, A-Z, 0-9].

• Interface type: Signaling, Media, WebSocket Signaling, External management, Internal management, Cus-
tom.

• Interface description: description (alias) for the interface that is used in the GUI configuration.

• TLS profile. By default, the TLS profile is set to None, meaning no TLS will be used on the interface. If TLS
is to be used, select the TLS profile to use on the interface. The TLS profiles can be edited under System /
TLS profiles page. There is profile named “default” which is automatically created at ABC SBC installation
and uses self-signed certificate.

• Applications (Apps): each logical interface can have one or more “Apps” enabled, which tune what service
on which port will be listening on that interface, plus allow setting more specific option.

Please refer to - Sec-application-interface-options section for the Apps options details.

After creating entry for the logical SBC interface, add at least one logical to system interface mapping under it.
The following parameters can be set for the mapping:

• Owner and Owner type: These list-boxes options set to which specific node the mapping of SBC logical
interface applies. It can be assigned to a particular node as been pre-configured under “System → Nodes”,
or all nodes belonging to a particular config group (“default” by default). Note: currently SBC supports only
one common config group named “default”, which can be used if the mapping applies to all nodes.

• System interface: system interface name (eth1, eth1.123 - VLAN tagged, bond1 - bonded interface)

• Type of IP address: use “manual” to manually specify the IP address, which is the default. If “autoconfig”
is used, the first IP address from the corresponding system interface will be taken automatically. Use “VIP”
to select one of VIP addresses, which can be configured in case of HA deployment mode under “System →
HA” screen. Note: when configuring IMI interface of a node belonging to a HA group, the IP address type
has to be set to manual.

• IP address: you can specify the IP address of the interface.

• Type of public IP address: use “manual” to manually enter the public IP address in the following field,
which is the default. Use “Amazon autoconfig” to autodetected the public IP address. Current options of
autodetection include Amazon EC2 cluster method.

• Public IP address: this parameter is optional. It allows to configure an IP address that will be used instead of
the real or virtual IP address in SIP signaling (in case of the signaling interface) or media description (SDP;
in case of a media interface). This is very useful to support near end NATs, e.g. Amazon EC2. Please refer
to Sec. Physical, System and SBC Interfaces more details on the topic.

• TLS profile. If any value is set there, it override the TLS profile value set for the logical SBC interface.
Otherwise TLS profile set on logical SBC interface is used.

7.2. SBC Interfaces 52

FRAFOS ABC SBC User Guide, Release 5.5.2

The fields: System interface, IP address, Public IP address and TLS profile supports cluster config parameters
(values in format “%param_name%”) so even single logical to system interface mapping record may result into
different IP address or system interface used on different nodes.

Important: When the SBC interfaces are configured, a warning message with a button to activate the new SBC
configuration is shown in the GUI. No SBC interface changes are applied until the “activate” button is used. When
the configuration changes are applied, all services using network configuration are restarted (e.g. SIP and RTP
processes, etc..). Note that this may cause service disruption.

7.3 Retro Compatibility

Retro compatibility was introduced with the ABC SBC 4.5 because of increment of the JSON config version from
1.0 to 1.1. The major change was the addition of interface applications, allowing a better transparency and tweaking
of what is running where.

As the change brings some inconsistencies between the two config versions, a retro-compatibility module was
developed. The purpose of that module is to, for every new config version to be deployed, check the current config
(version 1.1) against the target node release, and when needed convert the JSON config to the older format.

While some basic changes are made under the hood (converting application interface options to older global config
options - sshd port value for example), more complex changes are reported as an error.

The following table maps possible error situations with suggested solutions.

7.3.1 Common issues and fixes

Error message Cause Fix

json retro-compatibility 1.1 to
1.0:

[APP NAME] app not sup-
ported on older setup

The application is enabled on an in-
terface assigned to an node which
does not support it (< ABC SBC
4.5)

See the list of unsupported appli-
cations in the section Applications.
Disable the problematic applica-
tion.

json retro-compatibility 1.1 to
1.0:

custom interface isn’t retro
compatible

Custom interface is a new type of
logical interface which was intro-
duced in ABC SBC 4.5. This inter-
face is not backward compatible.

Unlink the custom interface from
the node or node’s config group.

json retro-compatibility 1.1 to
1.0:

different value provided
for the [PARAM] (app
[APP_NAME]) Imported
values: [VALUES]

Different values assigned for op-
tions on a pre 4.5 node.
Example: sshd port 22 on IMI, 23
on XMI

Use the same value for every appli-
cation assigned to the faulty node.
Example: set 23 for both IMI and
XMI

7.3. Retro Compatibility 53

FRAFOS ABC SBC User Guide, Release 5.5.2

Applications

Name from error Description Interface GUI name
pkapman Service which generates and servers pcap files on SBC

Available since: 4.3 Replaced by gopi since: 5.5
Internal
manage-
ment
interface
(IMI)

PCAP query
service

goministrator Perform administrator actions on a host. Please note
this does not affect xmloredis service in pre 4.5
releases
Available since: 4.5 Replaced by gopi since: 5.5

Internal
manage-
ment
interface
(IMI)

Management
for host

webconf-api Expose sems’s webconf mgmt via RESTful json API
Available since: 4.6 Replaced by gopi since: 5.5

Internal
manage-
ment
interface
(IMI)

Local
webconf API

turn Enable COTURN
Available only on 4.5 to 5.1.

Custom
interface

TURN server
for websocket

http_proxy Allow custom nginx proxy
Available since: 4.6

Custom
interface

HTTP proxy

http_redirect Allow custom nginx redirect
Available since: 4.6

Custom
interface

HTTP
redirect

goplog Provides access to logs on SBC node
Available since: 5.0 Replaced by gopi since: 5.5

Internal
manage-
ment
interface
(IMI)

Access to log
files

conference_gui Simple Web GUI for Meet-me conference
Available since: 5.1

Custom
interface

Simple Web
GUI for
Meet-me
conference

gopacla Provides firewall interaction for the node
Available since: 5.4 Replaced by gopi since: 5.5

Internal
manage-
ment
interface
(IMI)

Packet
classifier API

gopi Provides various interaction with the node
Available since: 5.5

Internal
manage-
ment
interface
(IMI)

Unified SBC
management
server

SBC 5.0 introduces possibility to hide GUI options which are not present / compatible with the selected version.
This can be found in CCM –> CCM Config –> Misc. The default value is “None” which means everything is
visible.

7.3. Retro Compatibility 54

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 1: Retro compatibility mode selection

7.3. Retro Compatibility 55

Chapter 8

TLS profiles Configuration

The TLS profiles screen is used for manage TLS profiles used by SBC interfaces (see section Physical and System
Interfaces). Each SBC interface can be configured to use different TLS profile.

The TLS profile takes effect only on those “Apps” enabled on the corresponding SBC interface, which support
using of TLS.

56

FRAFOS ABC SBC User Guide, Release 5.5.2

8.1 TLS profile options

Table 1: TLS profile options
Name Human friendly name, used for logging and others.
SSL certificate file Select a file containing SSL certificate in PEM or PKCS#12 format

Please note that, CA and possible intermediate CAs should be con-
tained in the PEM file if all should be presented.

SSL private key file Select a file containing key for SSL certificate in PEM or PKCS#12
format

Trusted CA certificates file Select a file containing of trusted CAs in PEM or PKCS#12 format
If provided, all certificates presented to the SBC will be checked
against it, regardless of whether “Mandate peer certificate:” is set.

Mandate peer certificate If checked, a peer certificate must be presented and will be checked
against the trusted CA file.

Verify client hostname/ip If checked, the SBC verifies whether hostname / IP address of the
client match the one mentioned in the peer certificate.
This applies only to Client signaling connections to the SBC (where
the SBC is server).

Disable server hostname/ip verification As of now, disable of verification of server hostname or IP works for
signalling application only.

Allow wildcard certificate If checked, the SBC accept wildcard certificates.
Warning: this option shall not be used in most cases. You enable it
on your own risk.
This option takes effect for signalling application only.

Enable Let’s Encrypt If checked, no certificate, private key nor CA certificates are required.
The ABC SBC will handle by himslef the completion of either an
ACME HTTP01 or a DNS01 challenge against Let’s Encrypt certifi-
cate authority.
Refer to Let’s encrypt gocertbot for more information about the re-
quirements.

DNS DNS domain associated to the node. The DNS is used to complete
the ACME challenge on the let’s encrypt side.
Require if Enable Let’s Encrypt is checked.

Challenge Type Type of Let’s Encrypt certificate authority challenge. Possible values
are http01 or dns01. Refer to the official home page or Let’s encrypt
gocertbot for more information.
Require if Enable Let’s Encrypt is checked.

DNS Provider DNS provider furnishing the node’s DNS.
Require if dns01 is selected.

Challenge Options Set of settings specific to the selected DNS provider. Refer to the
supported provider list for more information.
Example: the following was used to test
against namecheap’s sandbox platforme: {
“NAMECHEAP_PROPAGATION_TIMEOUT”:”600”,
“NAMECHEAP_API_USER”:”QQQ”,
“NAMECHEAP_API_KEY”:”XXX”,
“NAMECHEAP_SANDBOX”:”true” }
Require if dns01 is selected.

8.1. TLS profile options 57

https://letsencrypt.org/docs/challenge-types/
https://go-acme.github.io/lego/dns/#dns-providers

FRAFOS ABC SBC User Guide, Release 5.5.2

8.2 Certificate requirements

For the TLS certificates to be used with ABC SBC, the following requirements have to be met:

• The IP address or hostname for which the certificate is issued needs to to be listed in it’s SAN (Subject
Alternative Name) field.

If IP address is used for access to CCM, the SAN field format should be like “IP:1.2.3.4”, or if DNS name is used
then “DNS:test.example.com”.

• The “serverAuth” should not be set in “extendedKeyUsage” field of the certificate for SBC node (client) side.

• If the certificate is not of a “wildcard” type and was issued only for one IP address, it has to be carefully
considered to which Sbc node or group the TLS profile is assigned under Interfaces. It can be e.g. used for
two Sbc nodes that are used as HA pair and the IP address is used as VIP address.

Note that if using the Let’s encrypt certificates together with http challenge, each certificate issued by LE is for a
single unique IP address (aka a single node’ interface).

8.3 Let’s encrypt gocertbot

If the “Enable Let’s Encrypt” option is selected, a set of TLS certificate, private key and CA bundle will be auto-
matically acquired and renewed against Let’s Encrypt certificate authority challenges services.

8.3.1 Renewal

The certificate renewal will be attempted automatically 15 days before it’s expiration. On certificate obtention or
renewal, a notification email is sent to the administrator, using the email address set under ‘Global Config > System
Monitoring’ and a new configuration has to be activated from the Cluster Config Manager.

8.3.2 Settings example

We start by creating a dedicated TLS profile. Depending on the challenge type, we end with a configuration similar
to one of those two :

8.2. Certificate requirements 58

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 1: Profile using the http01 challenge

8.3. Let’s encrypt gocertbot 59

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 2: Profile using the dns01 challenge

Once the profile created, depending on the challenge type (refer to Limitations for more), we assign it to one or
more node/config groups interfaces. For the Let’s Encrypt certificate authority challenge to be attempted, we then
trigger a new configuration deployement from the Cluster Config Manager.

Fig. 3: Triggering the publish of a new configuration from the Cluster Config Manager

8.3. Let’s encrypt gocertbot 60

FRAFOS ABC SBC User Guide, Release 5.5.2

8.3.3 Process

Once the Let’s Encrypt certificate authority requirements deployed to the requested nodes, the Cluster Config
Manager gocertbot will attempt to complete the challenges.

1) gocertbot ask Let’s Encrypt certificate authority to complete the selected challenge for the given DNS

2) Let’s Encrypt certificate authority asnwer with a set of secret token to present to complete the challenge

The following occure depending on the challenge type:

http01

3) gocertbot forward the challenge’s token to the target node’s gopi (port :4224)

4) gopi dump the token to the node filesystem (/var/www/lets_encrypt/{TOKEN})

5) gopi start an nginx instance to serve the token trough the HTTP protocol

6) gopi allow the port 80 trough the SBCTEMP iptable rules

7) gopi give the green light to gocertbot, whom will forward it to Let’s Encrypt certificate authority

8) Let’s Encrypt certificate authority attempt the challenge by accessing http://DNS/.well-known/acme-
challenge/{TOKEN}

dns01

3) gocertbot create a TXT record derived from that token and our account key

4) gocertbot request the DNS provider to put that record at _acme-challenge.<DNS>

5) gocertbot give the green light to Let’s Encrypt certificate authority

6) Let’s Encrypt certificate authority attempt the challenge by accessing https://_acne-challenge.<DNS>

Success

On success, a set of TLS certificate, private key and CA bundle certificate are delivered to the gocertbot process.
Those values are persisted in database, which triggering a new “dirty” state warning.

To complete the process, we need once again to publish the new configuration from the Cluster Config Manager,
which provoke a dump of the new certificates into the /data/sbc/tls/ directory of the target nodes.

If doable (refer to Limitations for more), sems process hot reload the ssl certificate so active calls aren’t interrupted.

Failure

In case of failure, a mail is sent to the configured mail address. Logs are accessible either via syslog, or in
/var/log/frafos/sbc.log. Note that errors are also reported per certificate in /var/log/frafos/certbot/[profile name]
and monitored by the sbc-status-check service.

8.3. Let’s encrypt gocertbot 61

FRAFOS ABC SBC User Guide, Release 5.5.2

8.3.4 Requirement

The profile’s “DNS” field has to be set to a DNS name resolving to the public IP address of the ABC SBC target
node where the corresponding TLS profile is to used. The challenge to verify ownership will be done automatically
against it.

A valid email address need to be registered so it will be used to create an Let’s Encrypt certificate authority account
and receive email alerts (GlobalConfig > System Monitoring > email address). It’s better for the from email address
field to be set. Refer to monitoringparameters for more.

8.3.5 Renewal

The certificate renewal will be attempted automatically 15 days before it’s expiration. After certificate creation or
renewal, a notification email will be sent to administrator email address set under Global config / System monitoring
and new config has to be activated from ABC SBC GUI to propagate the new certificate to SBC nodes.

8.3.6 Limitations

• http01 challenge profile cannot be assign to more than a single node system interface

• http01 challenge doesn’t allow wildcard certificate

• dns01 challenge allow wildcard certificate, but the DNS provider must be supported (_provider list)

• sems isn’t able to hot reload WS interface certificate - as so, in case of certificate renewal, the whole process
is restarted

8.3.7 Debug

Table 2: Debug options
process good for logs
gopi up nginx instance, present LE token systemctl status sbc-gopi You can also set “dev”: true

in /etc/frafos/sbc-gopi.conf
gocertbot request LE’s for the challenge filter and

persit the cert database
logs are outputed to the USER syslog facility, in
/var/log/frafos/sbc.log

You may manually invoke the certbot, from within a Cluster Config Manager’ shell by running the following:

% sbc-gocertbot -d

In case of testing, to avoid reaching LE’ 168h rate limit, please remember to enable the “Query Let’s encrypt
staging environment” Cluster Config Manager’ config options.

8.3. Let’s encrypt gocertbot 62

Chapter 9

Hardware Specific Configurations

Depending on the hardware used for the ABC SBC deployment, there may be some fine-tuning needed to get
maximum performance.

9.1 Network adapters

If the SBC is configured to work as an RTP media relay and a high number of concurrent calls is expected, a good
choice of hardware is critical, specifically in terms of the used network adapter. RTP media traffic means high
packet rate, with many small packets passing through. Some network adapters have suboptimal throughput under
such conditions. Important things to consider when choosing a network adapter are:

• More receive and transmit packet queues are better. Each queue should be using separate interrupt.

• The adapter method of distributing packets to individual queues should include not only IP addresses into
the “hash” calculation algorithm, but should include also IP packet port numbers. (Otherwise the traffic may
end up in just one or two queues in case the SBC is communicating with only a small number of other devices
on even just one IP address.)

• The adapter should be able to buffer packets received and issue interrupts only after some amount of the
packets were received or some timeout. This can be usually configured using “coalesce” adapter options.

There is a global config section “Lowlevel” prepared to allow fine-tuning of settings related to network adapters.
The settings are applied after the server is rebooted. The reference of the low-level configuration parameters can
be found in Section lowlevelparameters.

System administrator can edit the settings depending on the particular hardware used. The settings are:

• Network interfaces on which a “receive packet steering” kernel feature should be enabled. Recommended
setting is to enable it on network interfaces used as media interface.

• Ethernet adapter coalescing options and rx/tx ring parameters. These affect how many packets the adapter
may buffer before issuing an interrupt. There is no recommended setting, as the values highly depend on the
ethernet adapter used.

• Network interfaces on which the individual interrupts for receive and transmit queues should be statically
bound to individual CPUs. If running on multi-CPU or multi-core platform, the recommended setting is to
enable this option for all network interfaces used as media interface.

• Options to unload kernel modules for connection tracking or to disable connection tracking completely.
Recommended setting is to stop connection tracking. However firewall rules used on the SBC have to be
considered as those may need connection tracking active. Note: the default firewall rules that come with the
SBC do not use connection tracking.

• Option to enable or disable automatic run of “mysqlcheck” command at end of server boot process. This
command checks and repairs (if needed) MariaDB ABC SBC database tables. Default and recommended
setting is to enable it.

63

FRAFOS ABC SBC User Guide, Release 5.5.2

9.2 Configuration of SBC Number of Threads

The major processes of the ABC SBC are running under the name of sems. The number of SBC “sems” process
threads affects the overall performance in terms of the maximum number of concurrent calls or maximum rate of
calls per second supported by the ABC SBC. The optimal settings depend quite a lot on the number of CPU cores
of the server used and also on the type of traffic being processed. As a general rule, for high number of concurrent
calls including RTP media with relatively low calls per second rate lower numbers of threads performs better, while
for high rates of calls per second with SIP only and no RTP media higher number of threads performs better.

The default value for the number of threads is 16. The recommended settings are:

• for SIP+RTP traffic use a number of threads equal to the number of CPU cores multiplied by 4

• for SIP only traffic (no media) use a number of threads equal to the number of CPU cores multiplied by 16

The number of threads can be configured under “Config → Global Config → Lowlevel”.

Fig. 1: Configuration of SEMS threads

9.3 Configuration of sysctl settings

Tuning of some kernel sysctl settings can be considered too, for better performance. These settings need to be
applied on the host where the container is running, as usually inside the container the values cannot be increased
above the host side settings.

The kernel sysctl settings are typically configured by editing “/etc/sysctl.conf” file or by providing custom config
file in “/etc/sysctl.d/” directory on the host system, and activating by running “sysctl -p”, depending on the OS used
there.

It is recommended to increase the socket receive and send buffer sizes, by setting these sysctl options:

net.core.rmem_max = 26214400
net.core.wmem_max = 26214400

If ABC SBC uses firewall and connection tracking is used, for high traffic case it is recommended to increase the
maximum number of connection tracking entries:

net.nf_conntrack_max = 1000000

9.2. Configuration of SBC Number of Threads 64

Chapter 10

General ABC Configuration Guide

10.1 Physical, System and SBC Interfaces

In the ABC SBC we distinguish between physical, system and SBC interfaces, see the Figure ABC SBC Interface
definition:

• A physical interface is one of the network interfaces (cards) physically available on the system.

• System interfaces is an interface mapped on one or more of the physical interfaces. A system interface can
be a “simple” physical interface (e.g. “eth2”), a VLAN (e.g. “eth3.1”) or a bonded interface that is bound
to two physical interfaces (e.g. “bond0” created by bonding “eth0” and “eth1” physical interface).

For active/hot standby high-availability mode, it is highly recommended to use bonded interfaces with each
physical interface connected to separate L2 switch to ensure reliable physical connections.

• SBC interfaces: These are logical interfaces used by the ABC SBC in order to distinguish between manage-
ment, signaling and media traffic.

65

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 1: ABC SBC Interface definition

For the details on the configuring the interfaces see Section Interface Configuration.

10.2 Defining Rules

The ABC SBC’s behavior is specified in form of rules, as explained in Section A-B-C rules. These rules consists
of conditions and actions and are processed sequentially until a matching rule is found.

Each rule may have none, zero or multiple conditions. If no condition is specified, the rule always matches and
all its actions are executed. If multiple conditions are associated with a rule, the rule matches only if all of the
individual conditions match.

An example of such a rule is shown in the Figure Example Rule. It consists of two conditions that match if a call
is intended for a telephone number beginning with 900 and the caller is not registered. If the condition applies, the
call is rejected using the 403 SIP code.

Fig. 2: Example Rule

10.2. Defining Rules 66

FRAFOS ABC SBC User Guide, Release 5.5.2

Each individual rule condition consists of three parts: a condition type, an operator and a value. Subsequent
subsections describe all these parts in details.

10.2.1 Condition Types

The type of a condition defines the left operand for the operation. The following table describes all available
condition types and operators types that are applicable to the respective condition types. Operators “==”, “!=”,
“RegExp”, “does not match RegExp”,”begins with”, “does not begin with”, are supported unless specified other-
wise.

Table 1: Condition Types
Condition type Description
Source Call Agent Check the source call agent. Only operators == and != are supported.
Source Realm Check the source realm. Only operators == and != are supported.
Source IP Check IP address the incoming request was sent from.
Source port Check port number the incoming request was sent from.
Inbound interface Check local interface the incoming request was received on. Value has to

be chosen from a list of configured signaling interfaces. Only operators ==
and != are supported.

Source-IP CC (GeoIP) Check country code against source IP’s geographic region. Note: the geoip
database must exist, which needs providing geoip license created using cus-
tomer account at MaxMind, via global config option under Config / Global
Config / Misc tab.

Destination Call Agent Check the destination call agent. Only operators == and != are supported
and only available in realm C rules.

R-URI Check current request URI.
R-URI User Check user part of request URI
R-URI User Parameter Check parameter in username part of request URI. For example in the R-

URI “sip:106;name=franta@domain.com”, the parameter “name” can be
checked for value “franta”

R-URI Domain Check host part of request URI, can contain port number
R-URI URI Parameter Check parameter of request URI.
From Check From header field value.
From URI Check value of From URI.
From User Check user part of From URI.
From Domain Check host part of From header URI, can contain port number
To Check To header field value.
To URI Check value of To URI.
To User Check user part of To URI.
To Domain Check host part of To header URI, can contain port number.
Supported header Check content of Supported header (since version 4.5)
Require header Check content of Require header (since version 4.5)
Header Check value of given SIP header or test if a SIP header does not exist. This

condition is a kind of “escape-code” for testing headers for which no other
conditions exist. The following header-fields will not be processed using
this condition: From, To, Call-ID, CSeq, RAck, RSeq, Route, Contact, Via,
Max-Forwards, Record-Route, Content-Type, Content-Length

Codecs Check presence/absence of codecs within SDP. Right operand specifies
codec name. Only operators Contain , Contain RegExp and Do not contain
are supported.

Media Types Check presence/absence of media type within SDP. Right operand specifies
media type name (e.g., audio,video)
Only operators Contain, Contain RegExp and Do not contain are sup-
ported.

continues on next page

10.2. Defining Rules 67

sip:106;name=franta@domain.com

FRAFOS ABC SBC User Guide, Release 5.5.2

Table 1 – continued from previous page
Condition type Description
SRTP Types Check presence/absence of SRTP type within SDP. Right operand specifies

media type name (e.g. DTLS, SDES, none)
Only operators Contain, and Do not contain are supported.

Call Variable Check call variable value using selected operator. The call variable has to
be already defined by Set Call Variable action. Any condition referring to
an undefined value returns FALSE as result.

Call Variable Existence Tests if a variable exists or is undefined. This is useful for example when
table lookups are used to discriminate accurately between non-existing and
empty values.

Generic Text Match Compare two generic text expressions, supporting replacements.
Generic Floating-point Operation Compare two floating point values, supporting replacements. Only >, <

operators are supported.
Method Check SIP request method. Value has to be chosen from a list of allowed

methods. Only operators == and != are supported.
Register cache Check content of register cache. Operands From URI (AoR + Contact +

IP/port), From URI (AoR + IP/port), Contact URI (Contact + IP/port), To
URI(AoR),R-URI (Alias) are supported.

NAT Check first Via address whether the sender is or is not behind NAT. This
compares the SIP message source IP with the first Via address and works
only if the UA directly communicates with the SBC.

Read Call Variables Trigger a predefined query in provisioned tables by a specified key value.
The condition returns true if the lookup was successful, false otherwise.

Last Action Result Returns true if the last action completed successfully, false otherwise (ana-
logical to shell $? variable).

Blacklist Checks if a call-agent is on a black-list (or not). A call-agent is blacklisted
when it is not reachable to make sure that no futile attempts to send traffic
to it are undertaken.

Date and Time Checks whether a Datetime, Date or Time value is before or after now plus
an optional offset. The value may be in the form ‘2016-05-25 13:10:41’,
‘2016-05-25’ or ‘13:10:41’. The offset can be years, days, hours, minutes
or seconds, e.g. ‘2y’, or ‘30d’, or ‘12h’, or ‘5m’, or ‘1800s’.

Parallel Call Count Tests if the number of parallel calls is below or above a threshold. The
number refers to the specific place in rules execution flow from which the
condition was evoked. It does not refer to a global number of calls.

Parallel Call Count (global key) Tests if the number of parallel calls for a global key is below or equal/above
a threshold.

Parallel Call Rule Hit Count Tests if the number of parallel calls that has the current rule applied is below
a threshold. The number refers to the specific place in rules execution flow
from which the condition was evoked. It does not refer to a global number
of calls.
I.e. if this condition is used in a rule on A-rules of a realm, it will increment
its counter as long as the rule is successful (i.e. all conditions of it evaluate
to true). Once it reaches its threshold, the counter will not be incremented
any more and the condition will evaluate `false, until one of the calls that
were previously created by successfully applying the rule is terminated.
In the case of the routing rules, the outcome of the routing operation is
also taken into account in addition to the conditions in the rule. I.e. if no
matching dst CA is found with a “call agent based on r-uri” routing rule,
the counter is not incremented.

Request source Tests whether request being currently processed is generated by the SBC
itself, alternatively as a result of unattended call transfer.

10.2. Defining Rules 68

FRAFOS ABC SBC User Guide, Release 5.5.2

10.2.2 Condition Operators

Operators supported within general conditions:

Table 2: Condition Operators
Operator Description
== left operand equals given value
!= left operand does not equal given value
RegExp left operand matches given regular expression
does not match RegExp left operand does not match given regular expression
begins with left operand starts with given string
does not begin with left operand does not start with given string
Contain right operand is contained in
Contain RegExp sample described by right operand is contained in
Do not contain right operand is not contained in

It is important to know that if a mediation action (Section SIP Mediation) changes content of SIP message, the
condition will refer to the value after modification. E.g., if you apply the rule action “SetFrom(sip:new@from.
com)”, the “From URI” operator will return sip:new@from.com!

Some conditions types take special operators and/or values. Particularly the “Register Cache” condition tests if a
registration can be found in SBC’s cache. The condition uses a specific operator that determines which URIs are
used for the test.

Supported operators for “Register Cache” are:

Table 3: “Register Cache” Operators
Operator Description
From URI (AoR + Contact + IP/port) the user with given From URI and Contact is registered from given

IP:port
From URI (AoR + IP/port) the user with given From URI is registered with any Contact from

given IP:port
Contact URI (Contact + IP/port) a user with given Contact is registered from given IP:port
To URI (AoR) the user with given To URI is registered
R-URI (Alias) the user with given request-URI is registered

The value for the “Register cache” condition allows to refine the test. It can be one of the following:

Table 4: “Register Cache” Conditions
Condition Description
Is Registered true if registered using built-in registrar or cache
Is Not Registered true if not registered at all
Is Registered Locally true if registered using built-in registrar using the action “Save REGISTER

contact”
Is Not Registered Locally true if not registered using built-in registrar
Is Registered Remotely true if URI cached using “Enable REGISTER caching”
Is Not Registered Remotely true if URI not cached

Supported operators for “Date and Time” are:

Table 5: “Date and Time” Operators
Operator Description
is after now plus The left operand is checked for being after the current time plus an offset
is before now plus The left operand is checked for whether it is before now plus an offset
is after now minus The left operand is checked whether it is after the current time minus an offset
is before now minus The left operand is checked for whether it is before the current time minus an offset

10.2. Defining Rules 69

sip:new@from.com
sip:new@from.com
sip:new@from.com

FRAFOS ABC SBC User Guide, Release 5.5.2

Note that the offset is optional, and it is always added or subtracted to the current time before the comparison.

Available operators for “Supported header” and “Require header” conditions are:

Table 6: “Date and Time” and “Require header” Conditions
Condition Description
contains Checks for presence of given option tag in Supported or Require header field
does not contain Checks for absence of given option tag in Supported or Require header field

Supported operators for “Request source” are:

Table 7: “Request source” Operators
Operator Description
is Matches if request being currently processed was generated in accordance with right operand.
is not Matches if request being currently processed was NOT generated in accordance with right

operand.

Supported right operands for “Request source” are:

Table 8: “Request source” right side operands
Operand Description
local request locally generated by SBC
call transfer request locally generated by SBC as result of unattended call transfer

Supported extra operators for “Header” are:

Table 9: “Header” Operators
Operator Description
RegExp All Of left operand matches given regular expression for all values of headers that can have

multiple values, such as Contact header (RFC3261#7.3).
Available since: 5.3

RegExp Any Of left operand matches given regular expression for any value of headers that can have
multiple values, such as Contact header (RFC3261#7.3).
Available since: 5.3

10.2.3 Condition Values and Regular Expressions

Values in a condition may be of several kinds. They are interpreted in the following descending order.

• |SBC| Escape Codes. These are characters prefixed by backslash (\) that are supposed to be interpreted
literally. These are normally used only for special characters. For example, \\ stands for backslash and \$
stands for the dollar character.

• |SBC| Replacements. These are variables that refer to different parts of SIP messages or internal variables.
They are referred to by $ character followed by variable name and replaced with value of the variable. The
variables that can be used are listed in Section Using Replacements in Rules.

• regular expressions. Regular expressions are expected if one of the regular-expression matching operators
is used. ABC SBC uses the “extended POSIX regular expression” syntax. That means, among others, that a
section enclosed in parenthesis can be referred to from back referencing expressions in actions’ parameters
(see Section Using Regular Expression Backreferences in Rules), the special characters * (star: zero to any),
+ (plus: one to any), ? (question mark: none or one), and {a,b} (curly brackets: from a to b) specify the
number of occurrences, . (dot) stands for wildcard, ^ (caret) stands for beginning of a string, $ (dollar) stands
for end of a string, | (pipe) stands for alternation and square brackets are used for character sets (^ as leading
character means negation).

10.2. Defining Rules 70

FRAFOS ABC SBC User Guide, Release 5.5.2

• literals. This is the simplest case: a value is used for condition “as is” without further interpretation. For
example, in condition “R-URI User == foo”, the word foo is matched against the value of userpart of request
URI.

Note that this interpretation order determines the condition result. If a regular-expression includes the “end-of-
string” character, $, it must be preceded by backslash. Otherwise it will be interpreted in the previous step as
an attempt to use a replacement. For example, the “empty string” regular expression must be denoted as “^\$”.
Another more tricky example is “telephone numbers consisting of a star and two four-digit number blocks”. To
make sure that a regular expression matches the whole userpart of a URI and not just a part of it, it must begin with
“^” and end with “$”. Because star has a special meaning in regular expression language, it must be preceded with
a backslash. And because the backslash may have special meaning in the ABC SBC GUI, it must appear twice.
The resulting expression looks like this

^*([0-9]{4,4})([0-9]{4,4})\$

Also note that an expression in the right operand can contain replacements, but can not contain back-references
as described in Section Using Regular Expression Backreferences in Rules. These are only available as action
parameters.

10.2.4 Actions

Actions define how a request shall be treated. There are many kinds of, described in the following sections of this
guide as well as in the Section Sec-Action.

The key functionality available through the actions covers the following aspects of VoIP processing:

Table 10: Actions
Action Group Purpose
SIP Mediation Manipulation of identity and URIs, header fields, and response codes. See

Section SIP Mediation.
SDP Mediation Manipulation of codec and early media negotiation. See Section SDP

Mediation.
Management and Monitoring Logging traffic and reporting SNMP statistics (Measurements and

Monitoring).
Traffic Shaping Putting quota on SIP and RTP traffic and reporting violations. See Section

Traffic Limiting and Shaping.
Media Processing Handling RTP traffic: RTP anchoring, RTP/SRTP conversion, RTP inactivity

detection, audio recording and transcoding. See Section Media Handling.
Identity Verifying a 2FA PIN number via DTMF and enrolling a user for 2FA number

verification.
SIP dropping Eliminating non-compliant traffic, silently or with a SIP response. See

Section Manual SIP Traffic Blocking.
Scripting Processing of internal variables that are used to link multiple actions together

using intermediate results stored in variables. See Section Binding Rules
together with Call Variables.

Register Processing REGISTER caching and uncaching, registrar, throttling. See Section
Registration Caching and Handling.

External Interaction Queries to external servers by REST or ENUM or internal pre-provisioned
database. See section Advanced Use Cases with Provisioned Data.

NAT Handling Fixing SIP to facilitate NAT traversal in a safer way than by the SIP
specification. See Section NAT Traversal.

Other Some other actions.

10.2. Defining Rules 71

FRAFOS ABC SBC User Guide, Release 5.5.2

10.2.5 Additional rule properties

It is possible to set some additional properties of the rules. Mostly for documenting and maintenance purposes.

Table 11: Additional rule properties
Property Description
Rule is active Allows to temporarily deactivate the rule.
Comment For documentation purposes.
Color Allows to color the background of rules, so they can be categorized in a way (e.g.

normalization, security rules, functional, adaptations, etc. . .)

10.3 Using Replacements in Rules

In many cases, the conditions values and parameters of actions are not known in advance: they depend on elements
of processed SIP messages and results of the message processing. Therefore, it is possible to compose the param-
eters of special strings that refer to SIP processing status. These strings are called “replacements” and are denoted
by a dollar (“$”) sign followed by an identifier. Each instance of a replacement is replaced by its value when the
rule is evaluated.

For example, $aU is a replacement for the User part of the P-Asserted-Identity header; $th is a replacement for the
host part of the To header. The action Set R-URI with the parameter set to sip:$aU@$th combines mentioned parts
of P-Asserted-Identity and To headers of the incoming request and puts them into the request URI of the outgoing
request.

All supported replacements are listed in the table below.

Note that these special characters should be backslash-escaped as follows:

• \ → \\

• $ → \$

Note that where replacement expressions are supported, it is possible to use \r, \n and \t to input carriage-return,
line-feed and tab, respectively. This can possibly be used to i.e. insert multiple headers but it is likely to break
functionality and should be avoided unless absolutely necessary.

It is important to know that if a mediation action (Section SIP Mediation) changes content of SIP message, the
substitution expression will refer to the value after modification. E.g., if you apply the rule action “SetFrom(sip:
new@from.com)”, $fu will return new@from.com!

Table 12: Replacements
Repl. group Replacements Description
$r $r. request-URI; note that the expression refers to cur-

rent request URI which may be changed during the
course of request processing

$ru user@host[:port] part of request URI
$rU R-URI User
$rd R-URI Domain (host:port)
$rh R-URI Host
$rp R-URI Port
$rP R-URI Parameters

$f $f. From header
$fu user@host[:port] part of From URI
$fU From User
$fd From Domain (host:port)
$fh From Host
$fp From Port

continues on next page

10.3. Using Replacements in Rules 72

sip:new@from.com
sip:new@from.com
mailto:new@from.com

FRAFOS ABC SBC User Guide, Release 5.5.2

Table 12 – continued from previous page
Repl. group Replacements Description

$fn From Display name
$fP From Parameters
$ft From Tag
$fH From header Headers

$t $t. To header
$tu user@host[:port] part of To URI
$tU To User
$td To Domain (host:port)
$th To Host
$tp To Port
$tn To Display name
$tP To Parameters
$tt To Tag
$tH To header Headers

$a $a. P-Asserted-Identity header
$au user@host[:port] part of P-Asserted-Identity URI
$aU P-Asserted-Identity User
$ad P-Asserted-Identity Domain (host:port)
$ah P-Asserted-Identity Host
$ap P-Asserted-Identity Port
$aP P-Asserted-Identity Parameters
$aH P-Asserted-Identity Headers

$p $p. P-Preferred-Identity header
$pu user@host[:port] part of P-Preferred-Identity URI
$pU P-Preferred-Identity User
$pd P-Preferred-Identity Domain (host:port)
$ph P-Preferred-Identity Host
$pp P-Preferred-Identity Port
$pP P-Preferred-Identity Parameters
$pH P-Preferred-Identity Headers

$c $ci Call-ID
$C $C. complete Contact-HF

$Ci user@host[:port], port is included if present in
Contact-HF

$Cx x’ is anything supported for other URIs
$s $si Source (remote) IP address

$sp Source (remote) port number
$d $di expected destination host

$dp expected destination port
$o $o. Outbound source IP address:port (local). Only

works in C-rules and port is the non-TLS listen-
ing port configured on the interface (which could
be different than the actual used port for outbound
TCP/TLS transport).

$oi Outbound source IP address (local). Only works in
C-rules.

$op Outbound source port (local). Only works in C-
rules and port is always the non-TLS listening
port configured on the interface (which could be
different than the actual used port for outbound
TCP/TLS transport).

$R $Ri Destination (local/received) IP address
continues on next page

10.3. Using Replacements in Rules 73

FRAFOS ABC SBC User Guide, Release 5.5.2

Table 12 – continued from previous page
Repl. group Replacements Description
$R $RI Destination IP address – like above but when a pub-

lic IP is configured on the receiving interface, its
value is used instead.

$Rp Destination (local/received) port number
$Rf local/received interface id (0=default)
$Rn local/received interface name (SBC interface

name)
$RI local/received interface public IP
$Rt local/received transport protocol

one of: tcp, tls, udp, ws (WebSocket), wss (secure
WebSocket)

$H $H(headername) value of header with the name headername; not ap-
plicable to from/to/ruri/contact for which specific
replacements must be used

$HU(headername) header headername (as URI) User
$Hd(headername) header headername (as URI) domain (host:port)
$Hu(headername) header headername (as URI) URI
$Hh(headername) header headername (as URI) host
$Hp(headername) header headername (as URI) port
$Hn(headername) header headername (as URI) display name
$Hp(headername) header headername (as URI) parameters
$HH(headername) header headername (as URI) headers

$O
Available since 5.5

$O(index) Value of route header at given index. Negative val-
ues can be used to access from the end, $O(-1) is
the last route header.

$OU(index) Route (as URI) User
$Od(index) Route (as URI) domain (host:port)
$Ou(index) Route (as URI) URI
$Oh(index) Route (as URI) host
$Op(index) Route (as URI) port
$On(index) Route (as URI) display name
$Op(index) Route (as URI) parameters
$OH(index) Route (as URI) headers
$Oc Number of route headers

$m $m request method
$V $V(gui.varname) value of Call Variable varname
$B $B(cnum.rnum) value of backreference with rnum number from the

condition with cnum number
$U $Ua register cache: originating AoR

$UA register cache: originating alias
$_ $_u(value) value to uppercase

$_l(value) value to lowercase
$_s(value) length of value (size)
$_5(value) MD5 of value
$_r(value) random number 0..value, e.g. $_r(5) gives 0, 1, 2,

3 or 4
$_UU(value) value (as URI) User
$_Ud(value) value (as URI) domain (host:port)
$_Uu(value) value (as URI) URI
$_Uh(value) value (as URI) host
$_Up(value) value (as URI) port
$_Un(value) value (as URI) display name
$_Up(value) value (as URI) parameters
$_UH(value) value (as URI) headers

continues on next page

10.3. Using Replacements in Rules 74

FRAFOS ABC SBC User Guide, Release 5.5.2

Table 12 – continued from previous page
Repl. group Replacements Description
$# $#(value) value URL-encoded
$time $time(value) time format as described in the libc strftime() func-

tion. ie: $time(%m-%d-%y-%H-%M)
$attr $attr(value) value of the given global attribute
$cntr $cntr(value) value of the given counter defined by User Defined

Counters
$e164 $e164(number, country_code) Convert the number parameters to the e164 format

of the country code. ie: $e164(0635215099, FR)
= +33635215099

$T $T(number, country_code) Return the number type given the country code.
The value are the same as the libphonenumber
shorturl.at/iwxyJ.

$rc2cc $rc2cc(region_code) Return the country code of the region. ie:
$rc2cc(FR) = 33

$cc2rc $cc2rc(country_code) Return the region code of the country. ie:
$rc2cc(33) = FR

$tls_ $tls_subject TLS Subject Name formatted as in RFC2253
$tls_subject_cn TLS Subject Common Name
$tls_issuer TLS Issuer Name formatted as in RFC2253
$tls_issuer_cn TLS Issuer Common Name
$tls_peername Return the verified peer name

$MOS
Available since 5.5

$MOSavgCA(
ca_uuid,
s/m/l,
default_value)

Return the RTP MOS QoS average value. Second
argument is either s, m or l which returns the short-
term, medium-term and long-term average value.
Coefficients for these can be configured in global
configuration. If no MOS information exists (i.e.
no calls on the CA yet), default value is returned.

$MOSavgRealmCAName(
realm_name,
ca_name,
s/m/l,
default_value)

Same as $MOSavgCA except that it takes realm
name and CA name instead of CA UUID.

$tls_peername Return the verified peer name
$tls_peername Return the verified peer name

10.3.1 Example Use of Replacement Expressions

In the following example, see Fig. Using Replacements, we set up the outgoing INVITE request as follows:

• set Request URI of the outgoing INVITE request to the user part of the P-Asserted-Identity header ($aU)
combined with the host part of the To header ($th) of the incoming INVITE request

• set host part of the To header to the value of the P-NextHop-IP header ($H(P-NextHop-IP)) of the incoming
INVITE request (the user part will not be changed)

• convert the user part and the host part of the From header into lower case (<sip:\protect\T1\textdollar_
l(\protect\T1\textdollarfU)@_l(\protect\T1\textdollarfh)>).

10.3. Using Replacements in Rules 75

http://man7.org/linux/man-pages/man3/strftime.3.html
sip:\protect \T1\textdollar _l(\protect \T1\textdollar fU)@_l(\protect \T1\textdollar fh)
sip:\protect \T1\textdollar _l(\protect \T1\textdollar fU)@_l(\protect \T1\textdollar fh)

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 3: Using Replacements

The effects of this transformation on a SIP message is depicted in Fig. Effects of using replacements:

Fig. 4: Effects of using replacements

10.3. Using Replacements in Rules 76

FRAFOS ABC SBC User Guide, Release 5.5.2

10.4 Using Regular Expression Backreferences in Rules

Whenever a regular expression match is executed in a rule condition, the matched substrings can be later used in
subsequent actions or conditions. The matched result is referred to by so called “backreferences”.

Backreferences are used by the replacement $B(c.r). The first index in the backreference, c, denotes the index of
the condition, where the first condition has the index 1, the second condition the index 2, and so forth. The second
index, r, denotes the index of the substring selection in the regular expression, where the first selection has the
index 1, the second the index 2, an so forth.

In the following example, see Fig. Using backreferences, we use backreferences to separate protocol discriminator
(“sip” or “tel”) from the rest of request URI. These two parts are matched in the regular expression in the 2nd
condition and are therefore referred to as $B(2.1) and $B(2.2). Particularly, the example saves the protocol dis-
criminator from the request URI in an INVITE request to a call variable called uri_scheme. Further it enforces
the “sip” scheme for the R-URI of the outgoing INVITE request.

Fig. 5: Using backreferences

10.4. Using Regular Expression Backreferences in Rules 77

FRAFOS ABC SBC User Guide, Release 5.5.2

10.5 Binding Rules together with Call Variables

Call Variables are a very powerful tool in the ABC SBC, because they can bind together different rules or rule sets.
Call Variables can be set by rules to any value using the Set Call Variable action. This variable will the persist
during the lifetime of the call. They can be set to a different value by a subsequent rule, again with the Set Call
Variable action.

Fig. 6: Setting Call Variables

Values of Call variables can be tested with the Call Variable condition using several operators: ==, !=, “RegExp”,
“does not match RegExp”, “begins with” and “doesn’t begin with”. Operands may be literal strings, regular ex-
pression if the “Regexp” operators are used, and they may contain Replacements (see Section Using Replacements
in Rules).

An additional condition, “Call Variable Existence”, allows to test if a variable exists and accurately discriminate it
from the case when it is empty-valued. This may be particularly handy when table lookups are used as described
later in Section Provisioned Tables. Otherwise reference to undefined variables always returns empty string.

Fig. 7: Testing Call Variables

They can also be used in other actions using the replacement expression $V(gui.varname), where varname refers
to the name of the variable, e.g. $V(gui.caller_group).

Fig. 8: Using Call Variables

The following example shows how a variable is assigned a value using the “Set Call Variable” action (see Figure
Example for using Call Variables), tested for a specific value “restricted” (see Figure Testing Call Variables) and
referred to from an action for adding a new Reason Header field using the $V replacement (see Figure Using Call
Variables).

10.5. Binding Rules together with Call Variables 78

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 9: Example for using Call Variables

10.6 SIP Routing

The key functionality of the ABC SBC is that of SIP routing: based on criteria chosen by the administrator, the SIP
destination for a SIP dialog is chosen. The routing decision is the step “B” in the A-B-C process: After A-rules
are applied based on who sent the SIP traffic to the ABC SBC, the destination Call Agent is chosen in the B-rules.
The final step is processing of the outbound C-rules, that are specific to the Call Agent chosen in the step B.

The routing decision is also an important part of the network reliability concept: it has implications to the way how
traffic is re-routed if downstream destinations are unavailable or overloaded.

Unlike steps A and C, the routing step B is global: it is executed for every combination of inbound and outbound
call agents and realms. It can be seen like the wiring board between these. Also unlike A and B rules, matched
rules can have only one action: selection of the destination.

The routing rules are processed sequentially until one is found that matches. Repetitive rules, such as least-cost-
routing tables, can also be managed by provisioned tables as described in the Section Provisioned Tables. If no
route matches, the ABC SBC stops processing the SIP request and returns a 404 SIP response.

The outcome of the routing process is unique determination of the destination Call Agent. This decision determines
the following aspects:

• which C-rules are executed,

• which backup Call-Agent is used, if forwarding to the chosen Call Agent fails,

10.6. SIP Routing 79

FRAFOS ABC SBC User Guide, Release 5.5.2

• which interfaces are used for forwarding,

• which IP address or addresses are used as next hop for forwarding.

Note that the routing process is applied only to dialog-initiating or out-of-dialog SIP requests. During the dialog
life-time, routing of in-dialog SIP requests follows a fixed path established in the process of the dialog initiation
with the peering SIP devices. The path may or may not be the same as that of dialog-initiating transaction and is
formed using Record-Route and Contact header-fields as governed by the RFC 3261 specification. Only if the “use
on first request only” option is turned off, or “Dialog NAT handling” is enabled, the ABC SBC routes subsequent
requests in a sticky way to the same hop as the initial one.

The following subsections describe how routing rules are organized and how to use the three types of routing rules:
“static” for well-known next-hop Call Agents, “table-based dynamic” for a massive amount of static routes, and
“request-URI based” for destinations identified in request URI. Eventually we show how the abstract destination is
translated into next-hop IP addresses for request forwarding.

10.6.1 Routing Rules (B)

The routing rules are an ordered list of routes, which are processed one by one after completion of A rules pro-
cessing. When the first rule condition matches, the destination call agent is chosen and route processing stops.

The configured Routing (B) rules can be viewed when clicking on the “Routing” menu entry.

Fig. 10: List or routing rules

A new routing rule can be created either at the beginning of the list (“Insert new Rule”) or at the end (“Append
new Rule”).

When creating a new Routing (B) rule, one or more conditions can be entered, see Fig. Define matching conditions
for routing, similar to the other types of rules (inbound (A) and outbound (C) rules).

10.6. SIP Routing 80

https://datatracker.ietf.org/doc/html/rfc3261.html

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 11: Define matching conditions for routing

It is also possible to define a default routing rule by omitting the condition(s). In this case, the rule will always
match, and thus finish the Routing rules evaluation. In case there is no such default rule and no other rule matches,
the ABC SBC answers the request with a 404 response.

There are several types of routing rules, that can be combined with each other and processed in sequential order:

• Static route – In a static route, all data describing the routing decision must be entered manually. If the
static route matches, routing finishes, otherwise it proceeds to the next rule.

• Dynamic route – if multiple repetitive rules, such as with Least Cost Routing, are configured, they are
better placed in a provisioned table as described in the Section Provisioned Tables. To make a lookup in the
table, select the table name in the “Route using” drop down list and indicate by what key the lookup shall
be performed. Like with static routes, if a matching entry is found, routing finishes, otherwise it proceeds to
the next rule.

• Call Agent based on R-URI – the ABC SBC tries to find a Call Agent that matches host in request URI.
This can be particularly useful if A-rules change hostname in request URI, for example by ENUM lookup.
If the lookup yields an address of a valid Call Agent, it is used for routing and routing finishes, otherwise it
proceeds to the next rule.

These route types are described in more detail in the following sections.

Validity of routing rule can be limited to some nodes only. In this case the routing rule is not executed on other
nodes. Routing rule can be assigned to only those nodes which belongs to any of the config groups assigned to the
particular routing table.

10.6.2 Static Routes

Static route is the simplest type of routing rule: the administrator explicitly chooses the destination Call Agent. If
no further specific treatment is desired, that’s all. The Call Agent is chosen, subsequently its C-rules are executed
and eventually signaling is forwarded through the interface associated with the Call Agent. This routing method is
applicable to all Call Agent types but those identified by a subnet address – these are used primarily for matching
of incoming traffic and do not uniquely identify a destination forwarding address.

The choice of Call Agent is accompanied by several other options. The most important is that of routing method
which specifies how the next-hop IP address is determined. Either it is determined from request URI or from pre-
provisioned information. Note that whichever method is chosen to determine the next-hop IP address, Call-Agent
does not change and its C-rules are used for request processing. Both methods may yield multiple IP addresses, in
which case the ABC SBC load-balances among them by their respective priorities.

The “Route via R-URI” method uses the request URI to find out the next-hop IP address. That is particularly useful
when A-rules altered the request URI using actions like reverse registration cache or ENUM lookup. If the host
part of request URI includes a DNS name that resolves to multiple destinations per RFC 3263, the ABC SBC
load-balances among the respective destinations by their priorities.

If “Set Next Hop” (also known as “outbound proxy”) is used instead, the next-hop IP address is determined using
pre-provisioned information. Either the IP address (or addresses) associated with the Call Agent is taken, or these
are explicitly overridden using the option “Use another destination instead of CAs’ destination(s)”. Please note

10.6. SIP Routing 81

https://datatracker.ietf.org/doc/html/rfc3263.html

FRAFOS ABC SBC User Guide, Release 5.5.2

that, if “Use another destination instead of CAs’ destination(s)” is used, backup CA will not fully work (C rules
from the CA will be applied to outgoing request). In that case, if the first CA fail, all calls are sent to the same IP,
located in “Use another destination instead”. Further method-specific options include:

• “Use on first request only” – this option changes default behavior for forwarding subsequent in-dialog re-
quests. By default when turned off, all subsequent outbound requests will follow exactly the same the path of
the previous dialog-initiating request. If however this option is turned on, the next-hop logic for subsequent
requests is governed only by the SIP standard procedures. Particularly, if the next hop in the INVITE path
was a non-record-routing proxy, it will not be included in request’s path.

• “Update R-URI Host”. This option rewrites host part of request URI with the address of the next hop. By
default it is turned off and the request URI remains untouched when forwarding.

• “Add Route HF”. This option is also known as “preloaded Route”. It prints the next-hop destination in Route
Header-field. Use only if downstream SIP hop is known to require such behavior.

The following advanced options can be also used with both methods:

• “Replace DNS name in R-URI through the resolved IP address” makes sure that if DNS names appears in
request URI, it is rewritten to IP address before forwarding.

• “Force transport”. Allows to override transport protocol to be used for the next hop. One of the following
protocols can be chosen: UDP, TCP, TLS.

• “Enable redirect handling”. If this option is turned on, incoming 302 are not passed upstream. Instead, the
ABC SBC takes content of Contact header field and uses it as another next-hop for forwarding the original
request. Particularly the Contact URI in the 302 response is used to rewrite request URI, determine the
next-hop IP address and look up a Call Agent whose C-rules are processed. Note that an error occurs and
a 500 response is sent upstream if none or more than one matching Call-Agents are found, or the Contacts
include DNS names. Use this option with care only for trusted destinations since the 3xx responses may
greatly impact where and how requests are forwarded.

An example is shown in Figure Static Routing destination: the Call Agent “users” is chosen so that its C-rules
will be processed. There is no additional IP address included in the “set-next-hop” choice of routing, so that the
dialog-initiating request is forwarded to IP addresses associated with the particular Call Agent.

10.6. SIP Routing 82

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 12: Static Routing destination

10.6.3 Table-based Dynamic Routes

Long repetitive routing rule sets can be better managed as tables. All other aspects of the routing logic remain the
same as with statically defined rules.

To deploy dynamic rules the following steps must be performed:

• definition of a routing table (see Section Configuring Tables)

• definition of routing lookup performed against the table in B-rules (see example in Figure Configure a route
lookup in a provisioned routing table)

• filling in the routing table with routing data (see example in Figure Adding a new entry to routing table)

The lookup definition requires two parameters: name of the table defined in the first step, and the value used to
lookup a matching table row defined in the second step. The value is defined in form of a replacement expression.
For example, $rU can be used to trigger lookups by user part of request URI.

10.6. SIP Routing 83

FRAFOS ABC SBC User Guide, Release 5.5.2

The table than includes rows identified by unique keys. In the screenshots bellow, the user part of request URI
($rU) is compared against a row with key 911. If a match occurs, the call agent “external_callagents” is used for
call forwarding.

When the table lookup is performed and the value matches no key, routing proceeds to the next entry in the routing
table. If there is no more such, routing fails and the SIP request is declined using the 404 SIP response.

Fig. 13: Configure a route lookup in a provisioned routing table

10.6. SIP Routing 84

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 14: Adding a new entry to routing table

10.6.4 Request-URI Based Routes

In some scenarios, the next-hop Call Agent is not exactly known at the time of devising a routing policy. Instead
it is known that a request URI identifies the Call Agent. This is often the case if the request URI is rewritten by an
external query, such as ENUM or REST. There would be little point in formulating rules like “if a CA’s IP address
present in R-URI, route to the CA” for every single CA.

Therefore there is the “route via R-URI” routing type, which finds a Call Agent based on address in request URI
and if found, routes to it.

Note that this is different from the “route via R-URI” option, which is only used to override the transport destination
but does not determine the Call Agent with its rules.

10.6. SIP Routing 85

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 15: Route by Request URI

Like with Static Routes, there are two routing methods for determining the next IP-hop: Either it is taken from
request-URI (the “Route via R-URI” method) or it is taken from Call Agent’s profile. The difference is subtle
because by use of the lookup an IP address gained from the request URI must match an IP address of a Call Agent.
A difference may occur when some other IP addresses linked with the DNS name are different from those linked
with the Call Agent’s profile. Also if an IP address comes in request URI and the “route-via-r-uri” method is used,
alternate destinations associated with the Call Agent will not be used.

10.6.5 Determination of the IP destination and Next-hop Load-Balancing

When the destination Call Agent is selected, one or multiple IP addresses are chosen for forwarding. These may
come from Call Agent definition, explicit addresses in the route or from request URI. Capability to choose more
than one IP address is important for load-balancing downstream hosts and for dealing with their unavailability. If
there are multiple IP addresses (so called “destination set”) the ABC SBC “hunts” through them based on their
priorities to find one that is responsive.

The destination set is formed depending on the choice of routing method described in previous sections. It works
the same way for static, dynamic and request-URI based types and it can be one of the following:

• if the “Set-next-hop” routing method is chosen without the “Use another destination instead of CAs’ desti-
nation(s)” option, the addresses specified in Call Agent’s profile are used

• if the “Set-next-hop” routing method is chosen with the “Use another destination instead of CAs’ destina-
tion(s)” option, the addresses specified in this option are used. Addresses associated with the Call Agent are

10.6. SIP Routing 86

FRAFOS ABC SBC User Guide, Release 5.5.2

not used for forwarding.

• if “Route via R-URI” is chosen, the address is taken from the request URI.

If an address in the destination set is a DNS name, it is resolved to IP address(es) using procedures specified in
RFC 3263 before further processing.

If the resulting destination set includes multiple entries they are attempted in successive order. An 8-second timer
is used to try up to 4 destinations, so that the hunting attempts complete before standard SIP transaction timeout
of 32 seconds. A 503 response makes the ABC SBC to attempt the next destination in the set immediately.

The hunting order is determined by priorities specified in DNS, “Use another destination” option or CA profile.
The way priorities are set complies to the RFC 2782: the ABC SBC initially contacts hosts with lowest-number
priorities. If there are multiple hosts with the same priority they are tried by probability as defined in their weight
field. The weight field specifies a relative weight, larger weights are given a higher probability of selection.

When no responsive destination is found, the ABC SBC will check if there is a backup Call Agent defined in the
current Call Agent’s profile. If so, it will undo previous mediation changes, process backup Call Agent’s C-rules
and retry the IP calculation process for the backup Call Agent.

The whole process is shown in Figure Flowchart of Process for Determination of the Next-hop IP Address.

10.6. SIP Routing 87

https://datatracker.ietf.org/doc/html/rfc3263.html
https://datatracker.ietf.org/doc/html/rfc2782.html

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 16: Flowchart of Process for Determination of the Next-hop IP Address

10.6. SIP Routing 88

FRAFOS ABC SBC User Guide, Release 5.5.2

10.6.6 IP Blacklisting: Adaptive Availability Management

Attempts to forward traffic to IP addresses known to be unavailable would be futile and impair call setup time.
Therefore the ABC SBC keeps a “destination blacklist” of IP addresses that were detected as unresponsive. The
ABC SBC dispatches no traffic to such destinations until the blacklisting time-to-live expires and the destination
is removed from the blacklist.

Blacklisting is done when a normal SIP request to a destination fails. Additionally the ABC SBC can proactively
probe destinations so that their unavailability is detected even before real traffic reaches them. Similarly their
renewed availability is detected earlier thanks to the probes even while they are on the blacklist. This is called
“Destination Monitor” or “OPTIONS monitoring”.

OPTIONS monitoring can be enabled for any SIP Call Agents that are identified by IP addresses or DNS name. To
turn it on, the “Monitoring Interval” under Call Agent’s “Destination Monitor” options must be set to a non-zero
value. The OPTIONS request are then sent in this interval periodically and have the following form:

OPTIONS sip:10.0.0.234 SIP/2.0
Via: SIP/2.0/UDP 10.0.0.155;branch=z9hG4bKo8lw1a70;rport
From: <sip:10.0.0.155:5060>;tag=b280210db5678d3c77dfc06c07acaac3
To: <sip:10.0.0.234>
CSeq: 32603 OPTIONS
Call-ID: 5F1BBCB9-57149447000B9232-0FF75700
Max-Forwards: 0
Content-Length: 0

On error, the destination address is placed on blacklist. If it is already there and the OPTIONS transaction completes
successfully, the destination address is taken off the blacklist immediately.

Note that this type of blacklisting is different from that used in the context of security policies as described in the
section Manual SIP Traffic Blocking.

To turn IP blacklisting on, set the time-to-live blacklisting period to a positive value under global options in “Con-
fig → Global Config → Default Destination Blacklist TTL” or under Call Agent properties as shown in Figure
Configuration of Destination Blacklisting under Call Agent Properties.

10.6. SIP Routing 89

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 17: Configuration of Destination Blacklisting under Call Agent Properties

IP blacklisting occurs in an almost automated way and does typically require minimum administrative attention.
Addresses are added to the blacklist once they are identified as unavailable and held on the list for a predefined
period of time, known as “time-to-live”. The following procedures may still be of use to an administrator:

• If ABC Monitor is used along with the ABC SBC, the history and status of the monitored Call Agents can
be tracked in the “Connectivity CA” Dashboard.

• Monitoring blacklisted addresses. It is possible to inspect the addresses which are currently blacklisted. The
list is available from the main menu under “Monitoring → Destination Blacklist”. (See Section Destination
Blacklists)

• Manual blacklisting. The administrator may add a new address to the blacklist from the main menu under
“Monitoring → Blacklist → New Destination/Save”.

• Testing presence on blacklist in rules. Rule conditions may include a test if a Call Agent is present on a
blacklist using the “Blacklist” condition type. The condition returns true of all Call Agent’s IP addresses are
blacklisted.

• Changing Time-to-Live (TTL). The addresses are held on blacklist for period of time specified under “Config
→ Global Config → Default Destination Blacklist TTL”. This value is used for newly blacklisted destina-
tions, unless a CA-specific TTL takes precedence. If TTL is set to zero, no blacklisting takes place.

10.6. SIP Routing 90

FRAFOS ABC SBC User Guide, Release 5.5.2

• Configuring Call Agent specific handling. There are the following options available under Call Agent profile:

– Destination Blacklist TTL (seconds). This value overrides the globally specified time to live.

– Blacklist grace timer (ms). Normally, a destination is blacklisted when the transaction timer expires.
This value provides some extra time before a downstream element is blacklisted after the transaction
timeout. If the destination responds before the grace timer expires, then it is not blacklisted. That is
especially useful when there is a proxy server between the ABC SBC and an unresponsive User Agent
Server. A too aggressive blacklisting process would otherwise blacklist the proxy before it times out
and sends a 408 message and make the proxy and elements behind it unreachable.

– Blacklist error reply codes. This feature allows to blacklist destinations that answer to monitoring
requests using these codes. When left empty, blacklisting happens when the reply code is 503. When
set, blacklisting happens if the status code of a reply matches one of the codes provided in this parameter.
To activate the feature, include a comma-separated list of response codes that lead to inclusion of a
destination on a black-list. Blacklist error reply codes also controls whether to failover to backup CA.
When blacklist error reply codes are left empty, failover happens:

∗ When the destination responds with 503

∗ when the reply is internally generated by the SBC (i.e. unable to resolve the destination address)
and the generated reply code is not 483, 488, 400

When blacklist error reply codes are set, failover happens:

∗ When the destination responds with one of the reply codes in the list.

When the reply is internally generated by the SBC and the code is 408, failover always happens re-
gardless of the blacklist error reply codes field being set or not. Having reply codes 300, 301 or 302 in
the list will not be effective as a means to failover to backup CA when redirect handling is active and
reply includes redirect destinations. Blacklist error reply codes are also respected for failover during
processing multiple ENUM query results.

– Destination Blacklist for in-dialog requests. This feature allows to blacklist destinations during in-
dialog requests. This can be used to allow in-dialog failover to another destination if the currently used
destination becomes unavailable during a dialog and thus lands on the destination blacklist.

– Monitoring interval (seconds). If set to a non-zero value, the ABC SBC tests availability of the desti-
nation by sending test message (OPTIONS). This allows to detect unavailable destinations even before
a real call hits it. It is recommended to use a value shorter than the blacklisting TTL: if the monitoring
period was longer, unresponsive destinations would be considered healthy in the time-window after
removing from blacklist before the next monitoring check.

Whenever an address is added to the IP blacklist, an event of type ‘notice’ is generated. The same occurs when the
TTL expires or the destination becomes responsive and the address is removed from the blacklist. The monitoring
status is regularly reported to the ABC Monitor using “dest_monit” events.

10.6.7 SIP Routing by Example

One important configuration step is the definition of routing rules, i.e. to which IP address shall incoming traffic
be forwarded. If a proper routing entry is not set up, the ABC SBC does not know where to forward traffic and
returns the SIP reply “404 Not Found”.

In our example, the routing configuration is very simple: What comes from the external Realm is routed to the inter-
nal Realm and vice versa. That takes two rules defined from the “Routing” section of the web user interface: Traffic
coming from the Call Agent “Proxy” is routed to the Call Agent “Users” in the external realm and traffic coming
from the “external” Realm will be routed to the “proxy” Call Agent in internal Realm. The resulting configuration
is depicted in Fig. Example Routing Rules.

10.6. SIP Routing 91

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 18: Example Routing Rules

When you define the respective routing destinations, specifying the abstract Call Agent may not be enough.
You may additionally need to help the SBC to determine to which IP address to forward the SIP message and
which hostname to use in the Request URI. For example, traffic leaving the SIP proxy carries the final destination
in the Request URI. You must configure the ABC SBC to use the IP address from the request-URI as the next hop.
The particular configuration is called Route via R-URI. On the other hand, all traffic from the public Internet goes
to the same proxy server. The appropriate configuration choice is Set Next Hop. You may specify the IP address
explicitly, if you do not do so, the IP address is taken from definition of the Call Agent.

The routing rule for the proxy-to-external traffic flow is shown in the Figure Routing Rule for internal to exter-
nal traffic, whereas the rule for the opposite direction is shown in the Fig. Routing Rule for external to internal
traffic. That’s it. We now have the routing policy which specifies that traffic from the external Realm shall be
forwarded to the internal Realm and vice versa. This simple policy can in fact serve an incredible number of
use-cases.

10.6. SIP Routing 92

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 19: Routing Rule for internal to external traffic

10.6. SIP Routing 93

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 20: Routing Rule for external to internal traffic

Nevertheless, if needed it can use more sophisticated matching criteria to specify routing decisions: It can divert
Message-Waiting-Indication traffic to a different server based on SIP method, different media servers based upon
codecs in use, different destinations based on custom-defined header fields, and so on, and so forth.

10.6. SIP Routing 94

FRAFOS ABC SBC User Guide, Release 5.5.2

10.7 View A-B-C rules

There is a possibility to view A-B-C rules together for particular SIP message, by clicking on the “ABC” icon for
a routing rule on “Routing” screen:

Fig. 21: List of routing rules

By clicking that icon, new screen is displayed showing A and C rules and the selected routing rule.

If the routing rule contains “Source Realm” or “Source Call Agent” conditions, then this Realm / Call Agent is
pre-selected in the top dropdown for A rules and A rules of this Realm / Call Agent are displayed in the upper part
of the screen.

Likewise, if the routing rule use static routing and a Call Agent is selected as the route destination, this Call Agent
is pre-selected in the bottom dropdown for C rules and C rules of this Realm / Call Agent are displayed in the
bottom part of the screen.

10.8 SIP Mediation

SIP Mediation features of the ABC SBC allow administrators to introduce massive changes to the signaling pro-
tocol. This is often necessitated by devices with imperfect SIP support, differing practices such as dialing plans
between peering providers, or need to implement network-based services such as Private Asserted Identity (RFC
3325).

The actual mediation rules are placed in inbound and outbound rules. The inbound rules are used to modify
incoming traffic coming from a Realm or a Call Agent to comply to local policies. For example, the inbound rules
may transform telephone numbers from a local PBX’s dialing plan to the global E.164 standard. All subsequent
actions already work with modified SIP messages. The outbound rules are used to modify outgoing traffic to a
form that the receiving Call Agent can or shall process. For example the outbound rules can remove all but low-
bandwidth codecs for the target known to be on a low-speed link.

It needs to be understood that mediation is a double-edged sword: massive changes to the signaling protocol can, if
not configured properly, cause substantial harm to interoperability. If the ABC SBC encounters, that a SIP message
modified by mediation rules breaks standard too far (such as if it generates an empty header-field), it discontinues
processing of the message and sends a 500 response back. Still many changes may be syntactically legitimate,
remain undetected and result in impaired interoperability.

This section discusses mediation of the signaling protocol, SIP. Mediation of media, that includes codec negotiation
and transcoding, is documented in the section Media Handling.

10.7. View A-B-C rules 95

https://datatracker.ietf.org/doc/html/rfc3325.html
https://datatracker.ietf.org/doc/html/rfc3325.html

FRAFOS ABC SBC User Guide, Release 5.5.2

10.8.1 Why is SIP Mediation Needed?

There are multiple root causes why SIP devices have often troubles communicating with each other. There are
different standardization groups working on SIP. Different developers often interpret the same specifications dif-
ferently. Operators deploy different operational and naming practices.

The ABC SBC has the capability to overcome some of these interoperability problems by manipulating the content
of SIP messages so that they better fit the expectations of the receiving side. One can distinguish between several
frequent interoperability issues: compatibility between various SIP protocol extensions, dealing with deviations
from the specification and best current practices caused by non-compliant devices and operating procedures, and
incompatibility between different transport protocols used for conveying SIP signaling.

SIP Standard Extensions:
There are various flavors of the SIP protocol. Even the basic SIP IETF standard is extended by tens of accom-
panying specifications, some of them are deployed, some of them not. Several other standardization bodies have
chosen to add even more extensions specific to their use of SIP. In the fixed environment, the TISPAN specifica-
tions <http://www.etsi.org/tispan/> are used. In the mobile network environment the 3GPP IMS specifications
<http://www.3gpp.org/> are the most favored. SIP-I <http://www.itu.int/rec/T-REC-Q.1912.5-200403-I/en> is
proposed for trunking scenarios in which SIP is used as the signaling protocol used to connect SS7 based net-
works over an IP core network.

The differences between the SIP specifications from IMS, IETF and TISPAN are mainly restricted to
the addition of certain headers, authentication mechanisms and usage of certain SIP extensions such
as NOTIFY/SUBSCRIBE or certain XML body formats.

In the context of interoperability of SIP flavors, the ABC SBC can provide the following services:

• Stateless SIP header manipulation: The ABC SBC can be configured to remove certain headers and add
others. This way, The ABC SBC can for example delete headers that are useful in an IMS or TISPAN but
not in an IETF SIP environment.

• Message blocking: Certain SIP messages might be useful in one network as they provide a certain service.
However, if this service is not provided across the interconnection points then exchanging them across the
networks does not make sense. SBCs can be configured to reject certain messages such as NOTIFY if
presence services are not provided across the network for example.

Deviations from the SIP Standard and Best Practices:
The experience from various interoperability events shows that different vendors interpret the SIP specifications
slightly differently. Especially parts that are specified with the strength of “SHOULD” or “MAY” are often im-
plemented as a “MUST” or ignored completely. This makes the communication between two components from
different vendors sometimes impossible. Sometimes even if the SIP equipment implements the standard correctly,
operators practices for deploying SIP differ to the extent that the protocol needs to be fixed.

The ABC SBC can be configured to overcome some of these issues and to fix certain issues that cause these
interoperability problems by offering the following features:

• Existence of certain headers: Some SIP components expect to see certain SIP headers with certain informa-
tion, for example a Route header pointing to them. Others might not bother to add this header. The ABC SBC
can be configured to take these special interpretations of the implementers into account before forwarding a
request and add or remove problematic headers.

• Location of information: Some SIP components expect to see their address in the Request-URI whereas
others want to see it in the Route header or both. This might not always be how the location information is
included in the SIP request especially if a request was redirected from one component to another.

• Tags and additional information: Again some SIP components might expect to see certain tags and param-
eters attached to certain headers such as rport with a Via header whereas other SIP components might not
add them.

SIP Transport:
SIP can be transported over UDP, TCP and TLS. The capabilities of different SIP implementations might vary with
this regard. That is, some components could support UDP but not TCP and others prefer to use TLS. Therefore,

10.8. SIP Mediation 96

FRAFOS ABC SBC User Guide, Release 5.5.2

the ABC SBC can be used to convert the transport protocol used by the source to the transport protocol preferred
by the destination.

Default SIP transport for outgoing requests is UDP. This can be changed via one of the following:

• SIP Routing is done via the Route via R-URI method and the R-URI contains transport parameter,

• SIP Routing parameter Force transport,

• Call Agent configuration parameter Force transport.

Note that when forcing the transport via one of the Force transport configurations, the transport parameter in
R-URIs will not be updated unless at least one of the following holds true:

• The routing method is Route via R-URI,

• R-URI transport parameter is set explicitly via Set RURI parameter action.

10.8.2 Request-URI Modifications

The most common manipulation is that of request-URI. Request URI describes who should receive the SIP request.
It may include an E.164 telephone number (like sip:+1-404-1234-567@pbx.com), a PBX number (sip:8567@
pbx.com) or be formed as an email-like address (sip:amadeus@mozart.at). A typical reason for changing the
request URI is normalization of different dialing plans. As an example you may translate a local extension number
(768) for a PBX with prefix (+1-404-1234) into a globally routable E.164-based URI sip:+1-404-1234-567@
national-gateways.com. You can use several types of modifications to the request-URI, all of them are applied
only to the first session’s request. The most important request-URI actions are the following:

• Strip RURI user: strips the specified number of leading characters from the user part of request URI. For
example strip-RURI-user(1) applied to the PBX URI 8567@pbx.com yields the extension sip:567@pbx.com
without the local “8” prefix. The action is applied as many times as it is called.

• Prefix RURI user: inserts a prefix to the user part of request URI. For example, prefix-URI(“+1-404-
1234-”) applied to the URI from the previous step yields sip:+1-404-1234-567@pbx.com. The result is
accumulated if the action is applied several times.

• Append to RURI user: appends a suffix to the user part of request URI. The parameter takes suffix value.
It may include replacement expressions. The result is accumulated if the action is applied several times.

• set RURI: entirely replaces the request URI with a new value.

• set Contact URI host: entirely replaces the Contact URI host with a new value. Note that the update isn’t
run on REGISTER replies.

Also note that the resulting URI not only describes the recipient, but its host part is used to determine the next hop
IP address if a route is used with the Route via R-URI option.

It is also worthwhile mentioning that URIs often represent additional services a caller gets. For example if a caller
prefixes number of an O2 subscriber in Germany with 33, his call will be directly routed to the recipient’s voice-
mail. However administrators would be ill advised to overload request URI with more than routing functionality.
An infamous example is using a plain-text password as phone number prefix for authentication. The fraudster Ed-
win Pena <http://www.fbi.gov/newark/press-releases/2010/nk020310a.htm> found that out, yielded more than 10
million minutes of VoIP service and in 2009 eventually two years in federal prison.

Several other mediation actions can process sub-parts of request-URI. They include:

• Set RURI host
– Replace host(:port) part of Request-URI with a new value specified in the GUI.

– Parameters: new host or host:port

• Set RURI parameter
– Add or replace parameter of Request-URI.

– Parameters: RURI parameter name, RURI parameter value

10.8. SIP Mediation 97

sip:+1-404-1234-567@pbx.com
sip:8567@pbx.com
sip:8567@pbx.com
sip:amadeus@mozart.at
sip:+1-404-1234-567@national-gateways.com
sip:+1-404-1234-567@national-gateways.com
mailto:8567@pbx.com
sip:567@pbx.com
sip:+1-404-1234-567@pbx.com

FRAFOS ABC SBC User Guide, Release 5.5.2

• Set RURI user
– Replace user part of Request-URI with a new value.

– Parameters: new user part.

• Set RURI user parameter
– Add or replace parameter of user part of Request-URI.

– Parameters: parameter name, parameter value.

10.8.3 Changing Identity

Identity of SIP session participants is also described in many other SIP header fields that sometimes need to be
changed.

Every SIP request must include URIs of session initiator in the From header-field and URI of intended recipient
in the To header field. The SIP standard has intended to use the From and To header field only as informational
description of how a session was started . URI of the originator in the From header field has limited identity value
as the plain-text URI is not covered by a message integrity check and can be easily changed by elements in the
SIP-path. Even a user client is quite free to put anything in the URI unless there is a client’s outbound SIP proxy
enforcing specific address for a digest-verified caller.

The URI in To header-field may have little relation to the actual recipient of a SIP request as the actual next hop is
stored in the request URI.

Notwithstanding how “light-weight” information From and To header fields convey, some operators deploy policies
based on them. They may only accept requests with From and To URIs that comply to their local convention. There
were even cases when To URI was used for routing. Therefore it is often useful to modify To and From header
fields. These modification rules apply to the first request of a SIP dialog. From and To in all subsequent messages
of a session are transformed transparently in compliance with the SIP protocol specification. The most important
To and From changing actions are the following:

• Set From / Set To :replaces the whole From/To header field with a new value, for example “Jasmine Blue”
sip:jasmine@blue.com. Only “tags” in the From/To header-fields remain unchanged to guarantee unique
identification of SIP dialogs.

• Set From User / Set To User: replaces the user part of the From/To URI.

• Set From Host / Set To host: replaces the host(:port) part of URI with a new value

• Set From / To display name
– Set only the display name of the From / To header.

– Parameter: new display name.

Additionally, the SIP protocol is using digest authentication identity (RFC 2617) to verify who is initiating a
request. If the digest identity of a request originator needs to be changed, the action UAC auth is used. It takes
the following parameters needed for the authentication procedure: username, password and realm. A request
forwarded downstream and challenged to authenticate by a downstream server is then resubmitted by the ABC
SBC using these credentials. Note that the input fields support replacement expressions. If i.e. password contains
special characters such as $, they need to be escaped with a backslash.

10.8. SIP Mediation 98

sip:jasmine@blue.com
https://datatracker.ietf.org/doc/html/rfc2617.html

FRAFOS ABC SBC User Guide, Release 5.5.2

Substitution Expressions

SIP message modifications typically “glue” pieces of the original messages and intended changes. For example, a
new To URI is to be formed using destination’s hostname (say “target-gw.com”) and telephone number in request
URI (say “+1-404-1234-567”). The corresponding set-To action needs to access the telephone number in the
original request. To address cases like this, the mediation parameters may refer to elements of the original message
by so called Replacement expressions. These always begin with a $ character. In our example, the user part of the
request URI is referred to as “$rU” and the action has the form:

Set To (”sip:\protect\T1\textdollarrU@targetgw.com”).

Other important replacement expressions are $fu for From URI, $tu for To URI, $si for source IP ad-
dress, $H(headername) for value of a header field.

If you need to access some sub-parts of the original SIP message without an addressable name, simple substitution
expression are not enough. Then regular expressions have to be used to select them. This is called „regexp back-
references. The backreference expressions refer to parts of SIP messages that were matched in rules’ conditions.
For example, to access the protocol discriminator in a URI, you need to create a rule condition matching it using
regular expression, and then refer to the matched expression. You would be forming a rule like this:

Fig. 22: Example of a Condition Being Referred to by a Backreference Expression

the second condition’s first sub-part (i.e. matched by the expression in the first parentheses) of the regular expression
would identify the protocol discriminator and yield “sip” for SIP URIs. The expression would be formed as this

$B(2.1)

10.8.4 SIP Header Processing

URI adaptation shown in previous paragraphs is important for harmonization or routing and identity representa-
tion between different SIP devices and administrative domains. Yet there are many other header fields conveying
important information in need of adaptation. Worse than that, some of them are not even known at the time of
writing this documentation. That’s because some of them may be proprietary – for example Sipura SIP phones
add QoS reports to every BYE message they send. Some header fields may even be specified in recently published
standard. Yet even then the ABC SBC can help – it can use general purpose text-processing methods thanks to
SIP’s text-based nature. Particularly the following actions are available:

• Remove Header: Remove-header removes all occurrences of a header-field identified by its case-insensitive
name from all requests and responses in a session. Exceptions apply: mandatory header-fields are not re-
moved: Call-ID, From, To, CSeq, Via, Route, Record-Route and Contact. If a header-field with compact
name form occurs, both forms must be removed explicitly. Newly added header-fields are not removed by
this action.

• Set Header Blacklist: is a convenience function removing multiple header fields by a single action. It
takes comma-separated list of header-field names as parameter and achieves the same effect as if you used
multiple occurrences of the Remove-Header action. Blacklists are applied one by one in the order in which

10.8. SIP Mediation 99

sip:\protect \T1\textdollar rU@targetgw.com

FRAFOS ABC SBC User Guide, Release 5.5.2

they appeared in the rules and are executed after applying both A and C rules. Blacklists can be a nice short-
cut for removing a header-field which has both normal and compact name. For example, you may want to
configure deletion of both forms of the Subject header field by using

Set-Header-Blacklist("Subject,s")

• Set Header Whitelist: is an even more aggressive convenience function for removing multiple header fields.
If used, all but mandatory and whitelisted header fields are removed from all requests and responses belong-
ing to a session. The action is applied after processing of both A and C rules completes.

• Add Header: adds a new arbitrary header-field to a dialog-initiating request. This action only applies to the
first request of a session. Its greatest power comes from the ability to craft complex header-fields using the
substitution expressions.

SIP Header Modification Examples

Let us show the power of these actions on an example. A real-world case is translation of identity between the pre-
standard Remote-Party-ID header field, still used by some SIP equipment, and the standardized Asserted Identity,
see RFC 3325. Both fulfill the same purpose, yet differ in their syntax which needs to be translated from one form
into the other.

The pre-standard header-field looks like this

Remote-Party-Id: "Mr. X" <sip:+1-404-1234-000@sipsip.com>;privacy=full

The standard form looks like this

P-Asserted Identity: "Mr. X" <sip:+1-404-1234-000@sipsip.com>

The simplest way for translation is

• finding out if there is an occurrence of Remote-Party-Id header-field by a rule with condition

if Header(Remote-Party-Id) does not match RE ^$"

• removing the header field by action

Remove-Header(Remove-Party-Id)

• and eventually forming the newly crafted header field using the URI in the previous header-field by

Add-Header(P-asserted-identity: $Hu(remote-party-id)"

Note that while this example mostly works, it ignores some parameter details for sake of brevity.

It is important to keep in mind that mediation changes have impact on subsequent SIP processing: replacement
expressions and header-field tests in condition consider the changed value.

The following example rules change request URI and From URI.

Fig. 23: Impact of Mediation Changes on Subsequent Processing

10.8. SIP Mediation 100

https://datatracker.ietf.org/doc/html/rfc3325.html

FRAFOS ABC SBC User Guide, Release 5.5.2

Substitution expressions in the Add Header Action print the request URI and From URI in a troubleshooting header-
field named x-after-change. Because they refer to the **current* value, the new URIs appear in the outgoing
INVITE regardless what they included originally. Similarly, the header-field value condition that tests if the From
URI has assumed the new value prints YES in another troubleshooting header-field name x-from-is-new:

INVITE sip:new@ruri.com SIP/2.0.
Via: SIP/2.0/UDP 192.168.0.84;branch=z9hG4bKtwvtoaKk;rport.
From: <sip:new@from.com>;tag=170A7805-533943A10009B434-D85F9700.
To: <sip:uritest@abcsbc.com>.
CSeq: 10 INVITE.
Call-ID: 77443978-533943A10009B47B-D85F9700.
User-Agent: Blink Lite 3.1.1 (MacOSX).
x-after-change: RDOT sip:new@ruri.com FU new@from.com.
x-from-is-new: YES.
....

Option tags

Option tags are unique identifiers used to designate extensions in SIP. These tags are used in Require and Supported
header fields.

To simplify manipulation with these headers ABC SBC offers since version 4.5 following conditions:

• Supported header: allows to check whether an extension is (is not) present in Supported header field.

• Require header: allows to check whether an extension is (is not) present in Require header field.

and actions:

• Update Supported header: allows to add option tags (Add tags) or remove them (Remove tags) from Sup-
ported header field or overwrite them completely (Set tags)

• Update Require header: allows to add option tags (Add tags) or remove them (Remove tags) from Require
header field or overwrite them completely (Set tags)

10.8.5 Early Media, Ring Back Tone and Forking

In SIP, so called “early media” and “forking” are quite complex SIP features which make interoperability sometimes
a challenge, especially when occurring together.

Early media appeared in the SIP protocol as a PSTN backwards-compatibility feature. In PSTN the difference
between early media like “please wait your call is important to us” and the actual call is simple: the latter is
charged for, the former is not. This is by the way the reason, why “early media” is sometimes humorously referred
to as “late charging”. Early media appear often when the called party is a PSTN gateway. The same protocol
vehicle is often also used to implement “ring back tone”. The protocol flow is rather simple: The callee sends a
provisional response with a reply code equal to 180 or 183 including an SDP answer and starts sending RTP with
the ring back tone to the caller. Usually, the caller User Agent only starts rendering the ring back tone to the user
when this response is received. The protocol usage examples and details are well described in the RFC 3960.

Forking is a feature anchored in the SIP specification RFC 3261. It permits SIP proxy servers to forward one
incoming requests to multiple different destinations. For example, one can setup this way all his phones to ring
in parallel: soft-phone, hard-phone, smart-phone and even a PSTN phone behind a PSTN gateway. Forking can
occur in parallel or in series. If serial forking is used, a forking proxy following best current practices sends a 181
inbetween. The “forked” INVITE requests may look almost identical but each of them always must have a unique
“branch” identifier in the topmost Via header field.

Various unpredictable situations appear when forking and early media appears at the same time. For example two
PSTN gateways send both early media to the caller. To deal with such situations the ABC SBC does only accept
the first early media stream and discards the subsequently received ones.

The actions described in this Section help to customize the behavior of the ABC SBC to some special cases.

10.8. SIP Mediation 101

https://datatracker.ietf.org/doc/html/rfc3960.html
https://datatracker.ietf.org/doc/html/rfc3261.html

FRAFOS ABC SBC User Guide, Release 5.5.2

The action Drop SDP from 1xx replies drops SDP payload from all listed 1xx SIP answers. The action takes
as parameter a comma-separated list of reply codes. SDP payloads are dropped from all responses with any of
these codes. This action is especially useful if specific replies should be handled, for example a locally generated
ring back tone should be preferred to a ring back tone from the far end. Note that the RTP relay is not started
if all provisional response are dropped, i.e. a provisional response needs to be processed for the RTP relay to be
initialized, also for relaying early media.

Fig. 24: Drop SDP from reply

Another action Drop early media drops the RTP packets of early media, that is until the call is established. Note
that if early media shall be dropped from signaling entirely, the actions “Drop SDP from 1xx replies” in combination
with “Translate reply code” 183->180 must be used.

Fig. 25: Drop early media

Support serial-forking proxy: This action allows to reset early media when a downstream SIP proxy server
indicates by a 181 response that it has chosen to try some other destination for the call. By default, only the first
early media arriving to the SBC is permitted, all other early media is dropped. This strict policy assures that
downstream SIP forking cannot create multiple early media streams mutually interfering with each other. With
this option, one can make an exception to the rule and permit early media coming later to override the previously
established early dialog. It works safely as long as there is no parallel early media and 181 indicates that a later
early media stream legitimately replaces the previous stream.

The following SIP flow-chart from Section 2.9 of RFC 5359 show a situation in which a SIP proxy generates a 181

Alice Proxy User B1 User B2
INVITE F1		
--------------->	INVITE F2	
(100 Trying) F3	------------->	
<---------------	180 Ringing F4	
180 Ringing F5	<-------------	
<---------------		
Request Timeout		
	CANCEL F6	
	------------->	
	200 OK F7	
	<-------------	
	487 F8	
	<-------------	
	ACK F9	
	------------->	
(181 Call is Being Forwarded) F10		
<---------------		INVITE F11
	--------------------------------->	
		180 Ringing F12
180 Ringing F13	<---------------------------------	
<---------------		200 OK F14
	<---------------------------------	
200 OK F15		
<---------------		

(continues on next page)

10.8. SIP Mediation 102

https://datatracker.ietf.org/doc/html/rfc5359.html

FRAFOS ABC SBC User Guide, Release 5.5.2

(continued from previous page)

ACK F16		
--------------->		ACK F17
	--------------------------------->	
Both way RTP Established		
<===>		
BYE F18		
--------------->		BYE F19
	--------------------------------->	
		200 OK F20
200 OK F21	<---------------------------------	
<---------------		

The action Fork allows to add a new branch to a processed request and start forking. Multiple occurrences of the
action result in multiple branches of the request. The action takes only one parameter, the request URI of the forked
request. The parameter can use replacement expressions, however if an invalid SIP URI is formed the call will fail.

Fig. 26: Forking

10.8.6 Call transfers

Using the action Call transfer handling it can be configured how in-dialog REFER requests are handled in the
ABC SBC. The configuration is per call leg, i.e. if used in inbound (A) rules REFER handling is set for the A leg,
if used in outbound (C) rules it is set for the B leg.

Following methods of REFER handling can be used:

• pass-through
Pass REFER through the ABC SBC to the remote peer (default).

• reject
Reject the REFER request with a 403 Forbidden reply.

• handle internally
In case of an attended call transfer to another call established through the ABC SBC (REFER with Replaces
in Refer-To pointing to a local call) the call legs are connected locally. Only offer-answer exchanges (re-
INVITEs) that synchronize session description on both ends are generated.

In case of an unattended call transfer (no Replaces in Refer-To) the ABC SBC generates a new INVITE to
the requested destination. This INVITE can be handled in routing (B) rules and outbound (C) rules similarly
to regular calls. For detection of such locally generated calls the condition Request source can be used.

In case of an attended call transfer to a non-local call (Replaces in Refer-To refers to a non-existent call
leg) the ABC SBC generates a new INVITE with Replaces to the requested destination. This INVITE can
be handled the same way as an INVITE generated for an unattended call transfer mentioned above.

Limitations:

• only in-dialog REFER requests are handled

• attended call transfer is not possible with transparent call IDs

10.8. SIP Mediation 103

FRAFOS ABC SBC User Guide, Release 5.5.2

10.8.7 INVITE with Replaces handling

ABC SBC is able to handle INVITE with Replaces header locally, if the Replaces header points to a call established
on the SBC.

The action Handle INVITE with Replaces header is used for this purpose - it activates local INVITE with
Replaces handling.

Limitations:

• INVITE with Replaces can not be handled when replacing call with transparent call IDs

10.8.8 Mapping Dialog-IDs in INVITEs with Replaces

If an INVITE with Replaces passes the ABC SBC, and the call to be replaced is also traversing the SBC, with
transparent call IDs not enabled the Dialog Identifiers in the Replaces header refer to the call leg on the side before
the SBC, but do not have a meaning after the SBC.

Using the Map Replaces header action, the dialog identifiers are replaced with the corresponding ones on the other
side of the SBC so that the Replaces still is valid.

10.8.9 Other mediation actions

The ABC SBC supports various actions related to SIP processing:

• Enable transparent dialog IDs
– Use the same dialog identifiers (Call-ID, From-tag, To-tag) on both sides of a call (e.g., for the incom-

ing and out going messages). If this action is not enabled, the FRAFOS ABC SBC changes dialog
identifiers. Unchanged Call-ID may be a security concern because it may contain the caller’s IP ad-
dress. However, transparent identifiers make troubleshooting and correlation of call legs much easier.
Also, for call transfers using REFER with Replaces as used in call transfer scenarios to work through
the SBC, transparent dialog IDs need to be enabled.

– Transparent dialog IDs should be avoided unless absolutely necessary. It is known to break unattended
call transfers with “call transfer handling” action.

• Forward Via-HFs
– This option makes the SBC keep all Via headers while forwarding the request. This behavior mimics

what a proxy would do, especially in combination with the Enable transparent dialog IDs action (the
only remaining difference to a proxy is the non-transparent Contact header field). Note that forwarding
the Via headers exposes the IP addresses of entities on the incoming leg side of the request.

• Translate reply code
– Change SIP response code and reason for all SIP responses with a specific code. Note that changing

responses between SIP reply classes may seriously break proper operation.

– Parameters: SIP response code to change, SIP code and reason phrase to use for the reply sent out.

• Allow unsolicited NOTIFYs
– The ABC SBC keeps track of subscriptions and usually only lets NOTIFY messages through if a sub-

scription for it has been created before (through a SUBSCRIBE or a REFER). This action tells the SBC
to let pass NOTIFY messages even if no subscription has been created before.

• Relay DTMF as AVT RTP packets (RFC4733/RFC2833)
– relays DTMF tones as RTP avt-tones packets (RFC 4733/RFC 2833)

– Parameters: none

• Relay DTMF as SIP INFO
– relays DTMF tones as proprietary SIP INFO payload

10.8. SIP Mediation 104

https://datatracker.ietf.org/doc/html/rfc4733.html
https://datatracker.ietf.org/doc/html/rfc2833.html

FRAFOS ABC SBC User Guide, Release 5.5.2

– Parameters: none

• Diversion to History-Info
– converts SIP diversion header-field (RFC 5806) into the History-Info header-field (RFC 4244) using

the guidelines set in RFC 6044.

– Parameters: none

• Set Max Forwards
– sets the value of Max-Forwards header field in forwarded SIP requests to the configured value. This

limits the number of hops a request can be forwarded until it is bounced back. It may make sense to set
it to a lower value than RFC 3261 recommends (70). If this action is not used, the value in incoming
request is decremented by one before forwarding.

– Parameters: number of hops.

• Set Content Type whitelists and Set Content Type blacklists
– limits SIP content types to well known payload types (whitelists) or to all but specifically prohibited

payload types (blacklists). Most VoIP SIP requests include the type of application/sdp.

– Parameters: comma-separated list of content-types

• Add dialog contact parameter
– Allows to add a parameter to the contact URI generated by the SBC.

– Parameters: The side of the call (caller/A leg, callee/B leg) can be specified, the parameter name and
value.

• Set Contact-HF parameter whitelists and Set Contact-HF parameter blacklists
– defines which Contact HF parameters are forwarded through the ABC SBC . By default no parameters

are forwarded. With whitelisting, only specified parameters are forwarded. With blacklisting, all but
specified parameters are forwarded.

– Parameters: comma-separated list of Contact parameter names

• Forward Contact-HF parameters
– makes sure all Contact HF parameters are forwarded as received in incoming request. If no action is

used, no parameters are forwarded at all.

– Parameters: none

• Call transfer handling
– The actions defines in which mode incoming REFERs will be processed. They are either rejected,

forwarded or handled locally.

– Parameters: REFER-processing mode

10.9 SDP Mediation

SDP mediation allows to manipulate how applications codecs will be selected during session negotiation.

10.9. SDP Mediation 105

https://datatracker.ietf.org/doc/html/rfc5806.html
https://datatracker.ietf.org/doc/html/rfc4244.html
https://datatracker.ietf.org/doc/html/rfc6044.html
https://datatracker.ietf.org/doc/html/rfc3261.html

FRAFOS ABC SBC User Guide, Release 5.5.2

10.9.1 Codec Signaling

In SIP call parties are free to negotiate their capabilities using the offer-answer model, see RFC 3264: The caller
offers its capabilities such as supported codecs and the caller party matches those against its own. In some cases it
may be reasonable to restrict the list of offered codecs. Mostly, this is done when there are bandwidth constraints.

If media anchoring is used, every single media stream enters and leaves the SBC. With the most common but
“hungry” codec G.711, it means 172 kbps x 2 in each direction, which corresponds to a maximum of about five
thousand calls on a gigabit link (the actual limit is in fact even lower due to packet rate constraints).

G.729 is probably the most widely used codec with lower bandwidth consumption. The bit rate for G.729 yields
62 kbps in each direction (the rate includes UDP, IP and Ethernet overhead).

For mobile clients, bandwidth hungry codecs with large packet size like G.711 can pose additional problems: Due
to longer use of the wireless interface, battery life is reduced, and also the packet loss rate is greatly increased with
the bigger packet sizes. On the other hand, CPU intensive codecs may also strain the battery on mobile clients if
they are not implemented in hardware.

For these reasons, the ABC SBC offers you these functions

• setting codec preferences (Set codec preference action). Specifies in descending order which codecs offered
in SDP payload should be “picked”.

• transcoding (Enable transcoding action) – allows to convert sender’s media from encoding the received
does not support to encoding he does. See more in Section Transcoding.

• codec white/blacklisting (Set codec whitelist and Set codec blacklist actions) explicitly specifies which
codecs are permitted or not.

In order to save bandwidth and improve battery life and call quality, to mobile clients G.711 should not be used by
using a Set codec blacklist action with “PCMU,PCMA” as blacklisted codecs.

Another example is emergency calls (911), where due to call quality concerns G.711 is the mandatory codec. If,
for bandwidth saving reasons, the G.711 codec is usually blacklisted, it should be whitelisted for calls sent to an
emergency gateway.

If codec restrictions result in a failure to find a common codec, the ABC SBC offers you to use built-in software
based transcoding to increase interoperability.

Please refer to the Media processing section, see Sec. Media Handling for a complete reference of functionality the
ABC SBC offers to restrict the set of used codecs, give certain codecs a preference or transcode between codecs.

10.9.2 Media Type Filtering

For an audio call, the media type in the SDP is “audio”. For a normal video call with audio, the two media types
“audio” and “video” are negotiated, for other types of calls (“image”, screen sharing etc), other media types are
possible.

Media types may be filtered using the actions

• Set media blacklist - remove all blacklisted media types from SDP

• Set media whitelist - remove all but whitelisted media types from SDP

The media blacklist/whitelist actions have as parameters a comma-separated list of media types (audio, video,
image, . . .) to be blacklisted. It is applied to all SDP messages exchanged at any time during the call. In the case
that after applying the action no media type is left in the SDP message then the request will be rejected with a
response message 488.

Example: Allow only audio payload to pass and prevent video streams to be negotiated; for the User Agents it will
appear as if the other side does only support audio.

10.9. SDP Mediation 106

https://datatracker.ietf.org/doc/html/rfc3264.html

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 27: Remove video streams

Example: Let audio and audio/video calls through.

Fig. 28: Allow only audio and video

Example: Remove “image” media type.

Fig. 29: Do not allow exchange of images

10.9.3 CODEC Filtering

The actual audio or video content of a call can be encoded with different codecs, which have each different prop-
erties regarding:

• audio or picture quality

• bandwidth consumed

• latency introduced

• processing power required

• resilience regarding packet loss

For example, the G.711 codec has “toll quality” (audio quality roughly equivalent to PSTN, 8khz sampling
rate/narrowband) at 64kbit/s (roughly 80 kbit/s including headers in each direction), introduces low latency, re-
quires little processing but is not resilient against quality degradation with packet loss. The G.729 codec has a
bit less than “toll quality” at 8kbit/s, 6.4kbit/s or 11.8 kbit/s (depending on the used annexes) with modest latency
introduced, some processing power required, and some resilience against packet loss.

In order for two endpoints to successfully establish a call, both endpoints need to support the same codecs. The
codecs actually used in a call are negotiated using the SDP protocol and the SDP offer/answer method to the subset
of codecs supported by both endpoints, and thus it is usually best to let the endpoints negotiate with the most
options possible.

If for some reasons codecs need to be filtered, the actions

• Set CODEC whitelist - remove all but whitelisted media types from SDP

• Set CODEC blacklist - remove all blacklisted media types from SDP

10.9. SDP Mediation 107

FRAFOS ABC SBC User Guide, Release 5.5.2

are used. Each of these actions takes a comma-separated list of codecs to white- or blacklist, which must be the
names of the codecs as they are used in SDP1 . Codec names are case-insensitive, a blacklist of “g729,ilbc” is
equivalent to “G729,ILBC”. In the case that after applying the action no codecs are left in the SDP message then
the request will be rejected with a response message 488.

Fig. 30: Setting a whitelist

Fig. 31: Setting a blacklist

All of the white- and blacklists applied for a call are executed one after another. For example, if one action sets
the whitelist “PCMU,PCMA,speex” and another action sets the whitelist “PCMA,G729”, it would result in only
PCMA (G.711 A-law) be let through for the call.

The codec white and blacklists are applied on both legs, the incoming and the outgoing call legs, and on all SDP
messages going in both directions (from caller to callee and from callee to caller) at any time during the call.

10.9.4 CODEC Preference

Codec negotiation in a SIP call usually works this way

• the offerer (the caller in calls with normal SDP offer-answer negotiation; the callee in calls with delayed SDP
offer-answer negotiation) lists the supported codecs for a call in preferred order, so the first codec in the SDP
is the codec preferred by the offerer

• the other party (the answerer) selects from this list the subset of codecs that it supports, and orders it according
to its preference or local policy, it may for example accept the order that the offerer asked for

• both parties encode and send media with the codecs that are in this subset, and usually the first codec in the
answer is used, but (even without re-negotiation) any party may switch in-call to any codec in this subset

Because the User Agents usually respect the codec preference of the other side, the operator may influence the
codec actually used for a call in the SBC by reordering the codecs as they are listed in the SDPs. Codec preferences
may be influenced in order to

• improve audio quality by preferring better performing codecs

• save bandwidth

• save processing power on the User Agents, e.g. especially if mobile/battery powered devices are used

The Set CODEC preferences action has as parameters two comma-separated lists of codecs, for the A (caller) leg
and the B (callee) leg respectively. An entry may have the specific sample rate appended separated with a slash,
e.g. speex/32000, speex/16000, speex/8000

1 e.g. PCMU for G.711 u-law, PCMA for G.711 A-law. See http://www.iana.org/assignments/rtp-parameters and the IETF payload type
specifications (RFCs) for the used names of the codecs.

10.9. SDP Mediation 108

http://www.iana.org/assignments/rtp-parameters

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 32: Setting the codec preferences

Any codecs in this list found in the SDP messages exchanged in either direction are prioritized in the order listed,
by placing them at the beginning of the codec list in the SDP document. It is a good practice to configure the same
order for both legs.

Fig. 33: Example: Prefer bandwidth-saving codecs (codecs that compress more): G.729,iLBC,speex,G.726

Fig. 34: Example: Prefer codecs with high audio quality: OPUS,SILK,speex/32000,speex/16000,G.722,AMR-WB

Additionally codec attributes offered in SDP can be filtered out using actions Set SDP attribute whitelist and Set
SDP attribute blacklist.

10.9.5 SDP Bandwidth attribute limiting

The SDP may contain a (session-level, or media-level) b=<modifier>:<value> attribute, which sets the bandwidth to
be used (see RFC4566). Different types of bandwidth signaling are standardized, denoted by different modifiers; the
most common being TIAS (RFC3890), AS (application specific, RFC4566) and CT (conference total, RFC4566).
The action Set SDP bandwidth limit can be used to limit the signaled bandwidth: If there is a bandwidth attribute
for the specified type, it will be set to the limit if it is signaled to be more than the limit. If there is no bandwidth
attribute for the specified type, one will be added.

Especially when the actual RTP bandwidth available to a call is limited using the action Limit Bandwidth per
call (kbps), using this action the SBC can signal the maximum available bandwidth to the endpoints.

If ‘Media type’ is not set, this action sets the session-level bandwidth attribute. If ‘Media type’ is set, it sets the
media-level bandwidth attribute for that media type. E.g., if ‘video’ is set as Media type, then all m-lines with type
‘video’ will have a properly limited bandwidth attribute. ‘Media type’ can be set to only a single media type value
(i.e. ‘video’ or ‘audio’), no list can be given here (i.e. ‘video, audio’ is wrong); if multiple media types should be
limited, multiple actions must be used.

10.9. SDP Mediation 109

FRAFOS ABC SBC User Guide, Release 5.5.2

10.10 Media Handling

10.10.1 Introduction

In SIP networks, the signaling and media packets may traverse different paths and may be handled by different
servers in the path. The ABC SBC can be on both the signaling path and the media path, or only on the signaling
path of a call.

In the SIP signaling, the IP addresses between which the actual media is exchanged is negotiated using Session
Description Protocol (SDP). The default signaling mode establishes a direct media path between the two call parties
as shown in Chart I of Figure RTP Anchoring with and without Symmetric Mode. If the ABC SBC is configured to
intervene and insert itself in the media path, it replaces IP addresses in SDP signaling with its own, attracts RTP
packets to itself and forwards them to the other call party, as shown in Chart I and II.

Fig. 35: RTP Anchoring with and without Symmetric Mode

Generally it is desirable to have RTP processed and relayed at as few network elements as possible, in order to
maintain lowest possible total latency and delay variations (jitter). Performance impact of media relay is discussed
in more detail in Section SBC Dimensioning and Performance Tuning. However, the ABC SBC must be inserted
in the media path in the following quite common situations:

• NAT handling - User Agents that are behind a NAT are not able to send RTP directly to other User Agents
behind NAT

• Connecting unroutable networks – when the ABC SBC connects networks that cannot directly send packets
between themselves, media anchoring must be enabled.

• Topology hiding - to improve end point and network security, the ABC SBC prevents entities from learning
the addresses of other entities in the network

• Bandwidth limitations - the ABC SBC can limit the bandwidth used by one call to the amount that is
necessary in order to prevent denial of service attacks, see Sec. Traffic Limiting and Shaping for more
details.

• Traffic monitoring - the ABC SBC can be used to monitor the amount of media traffic used

• RTP filtering - the ABC SBC can filter unknown or not negotiated RTP packets

• Logging and tracing - for troubleshooting call audio quality issues, the ABC SBC can be used to get a trace
of the traffic including RTP packets

• Recording for sake of monitoring, archival or lawful interception - in any of these case the operator must
relay RTP packets in order to record the audio.

10.10. Media Handling 110

FRAFOS ABC SBC User Guide, Release 5.5.2

• Quality assurance - especially when protecting a hosted PBX service it is often needed to record incoming
calls. To support this feature, an RTP anchoring is needed.

• WebRTC gateway - in this mode the ABC SBC must receive the media flows to be able to convert them
between plain RTP and secured DTLS-SRTP.

10.10.2 Media Anchoring (RTP Relay)

Media anchoring is activated by applying the Enable RTP anchoring action on a call in the A or C rules of
either source or destination Call Agent or Realm. This action may be activated several times on a call, however,
once activated it can not be deactivated for that call. Executing this action is a prerequisite for many other actions
described in this section, they will otherwise not work properly.

Fig. 36: Media anchoring configuration

The following sub-sections described in more detail respective configuration options of media anchoring.

10.10. Media Handling 111

FRAFOS ABC SBC User Guide, Release 5.5.2

RTP, RTCP and FAX (T.38) Relay

If media anchoring is activated, both RTP and RTCP packets are relayed for a call. Also, Facsimile over RTP and
over UDPTL (T.38) is relayed by the ABC SBC. No configuration step is required, the ABC SBC forwards Fax
automatically.

Symmetric RTP Mode and NATs

For User Agents behind a NAT - especially if both user agent are behind NATs - relaying media through the ABC
SBC may alone not be enough to accomplish NAT traversal. The problem is the ABC SBC cannot easily determine
the public IP address to which to relay RTP media for a SIP phone. The IP address advertised by the User Agents
in their SDP payload is non routable.

In a solution here called “Symmetric RTP”1 (also called Comedia-style2 RTP handling) the ABC SBC ignores IP
address advertised in SDP and learns the IP address and UDP port number of the UA by observing RTP packets
coming from the UA. It then starts sending the reverse RTP stream to that address. Symmetric RTP is activated by
either one of:

• SIP device, by inserting an “a=direction: active” property in the SDP

• ABC SBC, by enforcing it using the “Media far end NAT traversal” option in the “Enable RTP anchoring”
action

We recommend to leave this option turned on for all Call Agents in their both inbound and outbound rules. That
not only works safely in most cases, but is also more secure in that it prevents use of bogus IP addresses in SDP
payloads. Only when a Call Agent is a) known not to be implemented symmetrically AND b) is directly reachable
without NATs in between, it makes sense to turn this option for the Call Agent off.

The RTP flows are depicted in Figure RTP Anchoring with and without Symmetric Mode. The chart I. shows
RTP flows when no media anchoring is engaged. The RTP packets take then the “shortest path” without any SIP
intermediary. This flow fails in presence of NATs because telephone’s private IP address advertised in SDP is not
reachable for the peer device. The chart II shows RTP flows when media anchoring is enabled. The RTP flows
from and to a SIP phone are not symmetric, i.e., they are sent from and to different UDP ports as advertised in SDP
payload. Like in the chart I, NAT traversal will fail. The chart III shows symmetric RTP that is the safest option for
NAT traversal. IP addresses in SDP payload are ignored and the ABC SBC relays media to a telephone to address
from which phone’s RTP packets come.

Note well: it is important to realize that enabling Media far end NAT traversal for UAC will open a security
weakness subjecting the call to a so called RTP Bleed attack. It can be mitigated partially by using the Lock on
addresses learned from RTP option. Forcing usage of Secured RTP will effectively mitigate this attack as the
SRTP packets will be authenticated prior to the address learning step.

Intelligent Relay (Media Path Optimization)

If the ABC SBC handles a call which is originating from the same network that it terminates to, it may be useful to
skip media anchoring for that call, in order to save bandwidth and to reduce the total latency introduced. The ABC
SBC detects that the caller and the callee are behind the same NAT and is so, bypasses media relay. The test is done
by comparing source IP address of incoming INVITE to the intended destination of the request. This algorithm
works only if both User Agents are behind the same NAT and there are no intermediary elements between the NAT
and the ABC SBC. If this condition doesn’t hold, the optimization will fail. That may for example happen if two
user agents from behind different NATs speak to the ABC SBC through an intermediary proxy server and appear
to the ABC SBC as if they were behind the same IP address. Further, this algorithm does not detect UAs behind
a NAT which controls multiple public IPs. Also, the signaling IP address of the callee used for the comparison is
projected and does not support domain names.

1 The name “Symmetric RTP” is derived from the property of a UA that it sends RTP from the address/port combination where it expects
to receive RTP at.

2 The name “Comedia” came from an Internet Draft proposing use of “Connection Oriented Media”. The Internet draft draft-ietf-mmusic-
sdp-comedia became eventually RFC 4145.

10.10. Media Handling 112

https://datatracker.ietf.org/doc/html/rfc4145.html

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 37: Intelligent relay

A separate header field, the “Source-IP header field”, is used to transport the information about the caller’s network
through additional proxies in the signaling path. The header name may be configured as a property of the “Enable
RTP anchoring” action, so that it can be customized and subsequently filtered out if necessary. This way, the ABC
SBC can perform the “same-NAT” test even in scenario shown in Figure Intelligent relay and which a call passes
the ABC SBC twice. Once on the way in, when source IP address is known but not the final destination , and then
on the way out where the destination is already known but the source IP address would be unknown without the
additional header-field.

Advanced Anchoring Options

Further media-anchoring options are useful for interaction with advanced clients that use newer protocols: ICE and
STUN for NAT traversal, and also additional RTCP feedback for measuring QoS. Such clients are yet rare, however
a new interoperability profile for WebRTC clients does actually include all of these. See also Section SIP-WebRTC
Gateway. Other group of options are those related to keeping calls alive: they make sure that the ABC SBC and
its communication peers will properly detect active calls as such, and timely detect calls that ended abruptly.

The following advances options are available:

• Offer ICE-Lite – adds ICE-lite (server-side ICE) capability to SDP. This is a must for WebRTC clients that
expect their peers to communicate using ICE. WebRTC Call Agents must thus have this option enabled in
both A and C rules. It can be also useful for SIP-based User Agents if they support ICE – however generic
ABC SBC NAT techniques do not require use of ICE for facilitating NAT traversal.

• Offer RTCP Feedback – adds additional RTCP capabilities for sake of finer QoS monitoring than available
in traditional RTP implementations. This is mostly useful for WebRTC implementations which include this
extension in their interoperability profile.

• Keepalives – allows to send keep-alive RTP traffic. This is useful if one side of a call detects and discontinues
inactive calls whereas the other side suppresses RTP due to Voice Inactivity Detection or On Hold scenarios.
With this option turned on, the calls will not be discontinued.

• Timeout – allows call termination when no RTP traffic appears. Useful to eliminate “hanging calls” due to
abruptly disconnected SIP devices.

10.10. Media Handling 113

FRAFOS ABC SBC User Guide, Release 5.5.2

10.10.3 RTP and SRTP Interworking

The ABC SBC can also transform media between “plain-text” RTP and encrypted SRTP. This is particularly useful
in SIP/WebRTC interworking scenarios detailed in Section SIP-WebRTC Gateway.

The action Force RTP/SRTP performs protocol admission in A-rules and protocol conversion in C-rules. When
placed in A-rules, it only permits calls corresponding to the requested protocol, the calls will be rejected otherwise.
When the action is placed in C-rules, it converts media to the chosen protocol. If the chosen protocol is SRTP,
the keying protocol must be also chosen: DTLS or SDES. When the destination is a WebRTC client, the keying
protocol must be DTLS since spring 2014.

SRTP with RTP fallback (“SRTP fallback to nonsecure RTP”) is a method of optional SRTP (opportunistic encryp-
tion) where the offerer sends an SRTP offer, but the answerer can fall back to RTP in case SRTP is not supported.
This means that, contrary to SDP offer-answer requirements of RFC3264, the transport of the answer can be dif-
ferent to the offer: it can be RTP/AVP(F) when the offer is RTP/SAVP(F). This Cisco-specific method also adds a
Supported tag “X-cisco-srtp-fallback”. Whether SRTP or RTP is used can be renegotiated at every Offer-Answer
exchange (e.g. re-Invite). This fallback method does not try to re-negotiate non-secure RTP if a 488 is received.

Fig. 38: Enforce SRTP

10.10.4 SRTP End to End encryption

The action End to End encryption provides the capabilities to stay in the media path while not interfering in the
SRTP negotiation. The SRTP key is negotiated by both peers without any intervention of the SBC, which is not
able to encrypt/decrypt the media if this action is enabled. The RTP or SRTP packets are then just relayed as-is.

10.10.5 Transcoding

To enable broader interoperability, the ABC SBC can transcode between different codecs, that is it will decode in-
coming RTP packets and encode RTP packets into a different codec. The ABC SBC currently supports transcoding
for audio only, there is currently no support for transcoding video streams.

For transcoding to be available in the ABC SBC, the operator needs to get and install the proper license for the
media processing package, see Sec. Sec-Install for details. Also, for some codecs, patent licenses need to be
acquired separately. For some codecs, special software packages need to be installed, please contact FRAFOS
support if in doubt.

The FRAFOS ABC SBC supports software based transcoding. Transcoding adds non-negligible processing power
requirements to the SBC hardware, see Sec. SBC Dimensioning and Performance Tuning for details.

Depending on the codecs used, transcoding also reduces voice fidelity, especially if transcoding is applied a multiple
times on the path of the call.

10.10. Media Handling 114

FRAFOS ABC SBC User Guide, Release 5.5.2

The action Activate transcoding takes as parameter a comma-separated list of codecs which are added to the SDP
offer, if not present in the original offer. The codecs listed here must be supported by the ABC SBC . If the other
party accepts one of these, the media stream is transcoded. Both (or, all) codecs which the ABC SBC should
transcode between need to be added to the list of transcoding codecs.

Fig. 39: Activate transcoding

For example, if “PCMU,PCMA” is configured as transcoding codecs, and the caller offers only PCMU and the
called party PCMA, the ABC SBC transcodes from PCMU at one side to PCMA at the other side and the other
way around. If both sides happen to support the same set of codecs then transcoding will not be needed and will
not be used.

10.10.6 Audio Recording

Recording may be useful for a variety of purposes: most often for archival, monitoring and legal interception. If
a call is selected for recording, the ABC SBC collects audio and stores it in a WAV file. Each direction is stored
in one channel, the file is stored with sampling rate 8kHz, two bytes per sample (PCM), two channels. To allow
recording, media anchoring must be turned on. Recording works only if supported codecs are used.

Recording is activated by the action Activate audio recording that takes a comma-separated destinations as param-
eter.

The destination may be a filename, a HTTP server to which the WAV file is uploaded using the PUT method or a
SIP URI if the call recording is to be outsourced to a SIPREC call recording server. If a SIP URI is used, only one
is supported and should not be entered as a list.

The call recording action supports two more parameters allowing for start and stop announcements. These an-
nouncements are played when the recording starts or stops. Please note that the stop announcements can only be
played if SIPREC is used, and the call recording server (SRS) does stop the recording before the call has been
ended.

Replacement expressions can be used to provide easier identification of the system. USE CAUTION when de-
vising the filename: filename conflicts will result in different sessions overwriting each other’s WAV file. If no
filename is included, the ABC SBC uses its own ephemeral filename. Filenames are made relative to the directory
/data/recordings to make sure that the recording doesn’t interfere with the filesystem.

Fig. 40: Activate Audio Recording

When recording and generating the WAV files completes, an event is produced.

10.10. Media Handling 115

FRAFOS ABC SBC User Guide, Release 5.5.2

Note that to avoid premature deletion of important archival data, the system does not delete any audio files and
keeps them stored. This may potentially exhaust the disk space. Consult professional services if you need help on
managing audio archives.

SIPREC specific options

When a SIPREC is used for audio recording, a set of specific options can be configured.

Fig. 41: SIPREC options

The fields related to caller and callee determine the values transmitted to the recording server within the SIPREC
metadata. The Caller & Callee URIs are used to set the participants’ nameID aor tags, while Caller/Callee display
names are used to set the name tags.

The field “Additional header fields” can be used to add header(s) to the SIP INVITE message sent to the SIPREC
server.

The last option “Do not start yet” allows to delay the start announcement until the SIPREC server signals it has
started the recording. This allows for notifying the user properly. Please note that the media streams are transmitted
during the complete call to the recording server, even if this feature is used.

Since ABC SBC 4.5 it is possible to configure SIP timers towards SIPREC server. With appropriate values this
may help to speed up error detection. See semsparameters for configurable options.

10.10. Media Handling 116

FRAFOS ABC SBC User Guide, Release 5.5.2

10.10.7 Playing Audio Announcements

Often it is practical to inform caller about an error by an audio announcement rather than a numerical SIP code.
The ABC SBC can play audio files on several different occasions for each of which there is an appropriate action:

• “Refuse call with audio prompt” plays an audio file immediately on receipt of an INVITE

• “Play Prompt on Final Response” plays an audio file on an unsuccessful call attempts

• “Generate Ring-Back Tone” plays an audio file instead of the default ringing tone

• “Activate Music On Hold” plays an audio file when a party chooses to put a call on hold

The action “Refuse call with audio prompt” plays a prerecorded audio WAV file immediately on receipt of a SIP
INVITE. It is typically used to decline a call using a pre-recorded message. This action plays a prerecorded WAV
audio file and terminates the call. It takes the following parameters:

• filename of the announcement relative to the global configuration option “Prompts/Base Directory”. The
filename must refer to an existing file which has been uploaded to the prompts directory by administrator.

• a checkbox specifying whether the announcement shall be played as early media or establish a regular call

• a checkbox specifying whether the announcement shall be played once or in a loop

• SIP response code, phrase and header-fields to be used for terminating early media announcement (unused
if a regular call is established)

• also instead of playing a pre-recorded WAV file, a beep tone can be generated. To turn it on, activate the
“generate ringtone” checkbox and describe the tone length, on-off periods and frequencies.

Fig. 42: Example Action for Playing an Announcement

The same effect can be achieved for SIP calls that failed downstream. The action Play Prompt on Final Response
plays an announcement for call attempts that failed downstream due to one of the listed failure codes. The an-
nouncement can be played as a regular call or as early media, in which case a specified SIP response code will
conclude the announcement.

Fig. 43: Example Action for Playing an Announcement on Receipt of a 404 Response

Also it may be useful to play specific tones or audio when called party’s telephone is ringing. To enable this
functionality, use the action “Generate Ring-Back Tone” and either define a tone or reference to an audio file to
be played instead of the default ringing tone. The screenshot in Figure Example Action for Playing an Audio File
during Ringing is showing such a configuration that plays a predefined audio file during the ringing phase after the
receipt of the UAS’s 180 response. Alternatively one could have played a predefined dual-frequency tone.

10.10. Media Handling 117

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 44: Example Action for Playing an Audio File during Ringing

Similarly it is possible to play an audio file whenever a party chooses to put a call on hold. The action takes several
parameters that allow it to define how the on-hold status is signaled to the other call party and if the audio file is
played once or in a loop.

Fig. 45: Example Action to Activate an Audio File when a Call is Put on Hold

10.10.8 Onboard Conferencing

To accommodate smaller-scale dial-in conferences without need for an external conference bridge, the ABC SBC
can mix audio calls. To enable a conference, place a “join meet-me conference” action in A rules. The action’s
parameters allow to specify which conference an incoming call shall join: either by two-stage DTMF dialing, or
by a “hard-wired” conference ID, or by conference ID determined using a replacement expression.

If the room is entered via keypad (DTMF), then some more parameters control how that is done: A minimal length
of the room can be set, and also some unacceptable room numbers (e.g., too simple, can be guessed). Once the
room is entered via the keypad, a prefix can be prepended to it: This way, separate ‘namespaces’ of conference IDs
can be used, e.g. if the same SBC is connected to two different networks which should never share a conference
room, but in both of them the room ID should be entered via the keypad.

The room entered via keypad can also be split at a specific position into room ID and participant ID by using the
“Split room and participant ID” setting. This way, a web interface can send out invitations with individual PINs
and later identify the callers by their participant ID, while the different participants still hear each other in the room.

The following example configuration shows a conference bridge configured to serve calls from native SIP devices,
SIP-based PSTN gateways and WebRTC browsers. SIP devices and WebRTC browsers are handled the same way:
userpart of request URI ($rU) identifies the conference a caller is joining. Calls from the PSTN call-agents however
are prompted to type in the conference id when dialing in.

10.10. Media Handling 118

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 46: Example Screenshot: Conference Bridge configuration

Note that the default WAV announcement files (like conference ID prompt, or “you’re welcome” message) are stored
on the system in the directory /usr/lib/sems/audio/webconference and can only be changed through Command Line
Interface. For more information, refer to defaudiofiles. Also note that locally processed onboard conferencing calls
do not appear in the list of live calls (see Section Live Calls) in which only relayed calls are represented.

The status of the conference bridge can be inspected using CLI as shown in the following example

[root@ec2-54-154-137-127 ~]# sems-stats -c "DI webconference listRooms verysecret"
sending 'DI webconference listRooms verysecret\n' to 127.0.0.1:5040
received:
[200, ['1234'], 'Server: Sip Express Media Server (3.1.1-79-c86706a-417e607-87219e5
(x86_64/linux)) calls: 1 active/0 total/0 connect/0 min']
[root@ec2-54-154-137-127 ~]# sems-stats -c "DI webconference roomInfo 1234 4447"
sending 'DI webconference roomInfo 1234 4447\n' to 127.0.0.1:5040
received:
[0, 'OK', [['020D64C4-54E33359000B632C-E54DD700', '"homer" <sip:homer@simpson.org>',
3, 'direct access: entered', 0, '']],
'Server: Sip Express Media Server (3.1.1-79-c86706a-417e607-87219e5
(x86_64/linux)) calls: 1 active/0 total/0 connect/0 min']
[root@ec2-54-154-137-127 ~]#

10.10. Media Handling 119

FRAFOS ABC SBC User Guide, Release 5.5.2

Conferencing room pin protected

Conference room may also be protected in a form of a security PIN. That security PIN is asked to each participant
before joining a room.

To use this option, please enable the “Room is PIN protected” option of the “Join meet-me conference” action.
PIN management is subject to 3 possible options :

• First user to join is prompted to set the security PIN. To do so, please enable the “Room is PIN protected”
option and leave the “PIN” field empty.

• PIN is set via action rule. To do so, please enable the “Room is PIN protected” option and set the “PIN”
field to the desired security PIN.

• PIN is set via another action. User may use the “Meet-me conference set PIN” action to set and persist a
security PIN into a specific provisioned table.

In the following scenario, user is required to first set the pin of a room before accessing it. We request the user dial
the 9011234 so the security pin of the room 1234 may be set. He’s then able to dial the 9001234, where he’ll be
prompted for the security PIN of the room 1234 before being able to join.

Please start by creating a provisioned table of type “pins”. Use the “Meet-me conference set PIN” action to set the
PIN of a room and persist that value into the provisioned table. You may then fetch the PIN value from the table
and use it as call variable (see following rules screenshot)

See the following rule configuration as example :

Please note that for this example to work, we’ve created a new CCM’ user “sbcuser” and granted him full actions
on the following permissions: - “Tables: definitions” - “Tables: values”

10.10. Media Handling 120

FRAFOS ABC SBC User Guide, Release 5.5.2

Record and play username

Conference room offer the possibility to register participants’ name so it is played, under various circumstances to
the other callers.

In the following example, participants have their username preserved as file on the file system for 90 days. The
files is named after the “From User” rule action replacement.

Associated gconfig:

The following impacts rooms using such options:

10.10. Media Handling 121

FRAFOS ABC SBC User Guide, Release 5.5.2

Username recording

A joining participant will be asked for it name before joining the room. When re-joining, a participant will be
prompted between either keeping an existing recording (see later description) or registering a new one. Depending
on the configuration, the recorded username will be kept as .wav file on the file-system, using a dynamic file naming
(see example). To allow recording to be re-used, we recommend using some caller’ unique information: ip, number
. . . File will be kept until the room is closed (default behavior) or, if specified otherwise, preserved for a given
amount of time (meetmeconfparameters) (general to all rooms).

New announces

Some new announces have been introduced, taking advantage of those new recorded usernames. As so, current
room users are now notified of the following events:

• a new participant joined the room

• a participant leaved the room

• pound detected (#), the list of current participants will be played back to the emitter

Please note that, depending on the configuration (meetmeconfparameters), pressing * while in call play back the
number of participants to the emitter. Both can be used together.

Multi lingual conferencing announcements

Conference room now support multi lingual prompts! If enabled, user will have the possibility to change the
prompts’ regional for his ongoing call.

The feature is disabled out of the box. To use it, please enable the “Multi- Langague support (MLS)”. Optionally,
one may configure custom regional prompts via the “MLS prompt directories”. Defaults value set English as
primary regional, user have the ability to switch to German by pressing 2.

In the following example, the default regional is set to German, French can be selected by pressing 2, English by
pressing 3.

10.10. Media Handling 122

FRAFOS ABC SBC User Guide, Release 5.5.2

Note that for this example to work, custom French prompts were manually deployed to the /data/
custom_prompts/fr directory of the ABC SBC container.

Please refer to defaudiofiles for a list of expected prompts.

10.11 NAT Traversal

SIP devices behind Network Address Translators (NATs) cannot reach other SIP devices reliably. The root reason
is SIP protocol advertises SIP device’s IP addresses in several places in the protocol: Contact and Via header fields
SDP c line. These addresses are non routable once they cross a NAT device and break signaling. The ABC SBC
is designed to assist the to facilitate NAT traversal for SIP devices by several techniques: it centers itself in the
middle of communication path, sends signaling and media reversely to where it came from even in violation of the
SIP standard, replaces private IP non routable addresses with its own and keeps all bindings alive.

As depicted in Fig. SBC and NAT traversal, when an INVITE request traverses a NAT then only the IP addresses
in the IP header will be changed. Any IP addresses included in the message itself, e.g., Contact, SDP c line, will
still reference the private IP address of the caller. As the callee would use the information in the Contact header
for replying back to the caller and send media packets to the address in the SDP the call establishment will fail.

10.11. NAT Traversal 123

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 47: SBC and NAT traversal

In the context of NATs, there are basically three different possibilities with respect to the network topology that
will influence the possible measures that can be taken by the ABC SBC to deal with those NATs:

• Far end NAT: This is the most common case in public SIP service scenarios. The SBC is located on the
public Interned and the end-devices access the SBC from behind NATs. The SBC must facilitate the NAT
traversal for the end-devices: it must accomplish RTP traversal, SIP traversal and registration off-load.

• SBC is placed on the NAT:. This is the most common case in enterprise deployments in which the SBC
acts as firewall between a private network with SIP telephones and PBXes, and the outside network. It has
at least one signaling and media interface inside and one outside the NAT. SIP signaling is handled natively
without any additional configuration. However, it is necessary to enable RTP anchoring (relay) so that the
media payload can flow from between the otherwise non routable networks.

• Near end NAT: here, the SBC is placed right behind the NAT and a port forwarding is configured from the
NAT to the SBC. This is considered by the ABC SBC as a special case of the previous configuration. In this
case, it is perfectly sufficient to configure the signaling and media interfaces with the public IP address on
the outside of the NAT. It is also necessary that the configured port range on the media interface corresponds
to the forwarded ports for media transport, as no port translation is supported at this place.

In order to enable users behind a NAT to be reachable the ABC SBC needs to perform the following tasks.

• Detect if a SIP user is behind a NAT. This allows to eliminate expensive NAT traversal facilitation for users
who do not need it. The test is performed by the condition NAT in inbound rules.

• Fix outgoing calls: The ABC SBC must fix SIP INVITEs from users behind NATs so that subsequent SIP
messages coming back will cross the NATs successfully. Particularly, the SBC fixes Contact header-field
and stores NAT information in dialog context. This functionality must be enabled in inbound rules using the
Enable Dialog NAT Handling action.

• Fix incoming calls: The ABC SBC must deliver incoming INVITEs for a user behind a NAT through the
NAT devices. This is only possible if the NAT devices keep the UDP or TCP binding open over which
the user registered. Otherwise the user becomes unreachable once the binding expires. Therefore the ABC
SBC pays great attention to the SIP registration process: It can force more frequent registrations to keep the
bindings alive and it also keeps source address from which the registration came. Subsequent requests for
the registered client are forwarded to the address (as opposed to the private IP address advertised in Contact
header-field). To enable this functionality the actions REGISTER throttling and Enable REGISTER
caching must be applied to REGISTER messages, and the action Retarget R-URI from cache, with the

10.11. NAT Traversal 124

FRAFOS ABC SBC User Guide, Release 5.5.2

enable NAT handling option turned on must be applied to calls towards the client. See section Registration
Caching and Handling for more details.

• Media anchoring: The ABC SBC redirects RTP stream to itself and sends symmetrically one’s party RTP
media to where the RTP media from the other party came from. This symmetric mode of operation overrides
SIP signaling but works more reliable, because it is better compatible with how most NAT devices work.
The downside of this approach is the extra bandwidth consumption on the ABC SBC and increased RTP
latency. Media anchoring is enabled by the action Enable RTP Anchoring. “Force symmetric option” can
be turned on and off for UACs in inbound and UAS in outbound rules. Media handling and RTP anchoring
ABC SBC is described in more detail in Sec. Media Handling.

In summary the following conditions and actions are used to configure NAT traversal:

• NAT condition - check if the first Via address is or is not behind NAT. This checks if the first Via address is
the same as the IP address that the SIP message was received from.

• Enable dialog NAT handling action - force all subsequent in-dialog messages to be sent to IP/port from
which the dialog-initiating request came.

• Enable RTP anchoring action - force RTP from a SIP user to be sent through the ABC SBC. The Media
far end NAT traversal option forces media from the other side to be sent reversely to where the user’s media
came from. Turn it off only if a Call Agent is known to reject symmetric media.

• Enable REGISTER caching must be applied to REGISTER messages for retargetting to function. See
section Registration Caching and Handling for more details.

• Retarget R-URI from cache (alias) action. This action makes sure that INVITEs coming to a registered
client will reach it by sending them to the transport address from which a REGISTER came. The options En-
able NAT handling and Enable sticky transport should be turned on.

The example in the following subsection shows how to place the respective actions in the ABC SBC rulebase.

Note: In an actual deployment, the specific topology needs to be considered carefully. For example, if SIP
passes the SBC twice, RTP could without precaution be also anchored twice resulting in unnecessary performance
degradation. That’s because the SBC recognizes inbound and outbound call legs as two separate calls.

10.11.1 NAT Traversal Configuration Example

This example shows how to put all the NAT-facilitating actions in a consistent rule-base. This example is based on
the “far-end” NAT traversal topology as shown in the Figure NAT Traversal Example: Network Topology. In this
topology, the ABC SBC is multihomed: it connects to the public Internet with one interface and to a private network
with the other interface. Both networks are not mutually routable, the ABC SBC connects them on application layer.
SIP telephones are on the public side behind NATs, service provider infrastructure including a SIP registrar, proxy,
media server and PSTN gateway are located in the private network.

10.11. NAT Traversal 125

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 48: NAT Traversal Example: Network Topology

The first preparatory step to be is handling telephone’s outgoing SIP messages coming from the external realm.
That is done in the external realm’s A rules: Dialog-initiating requests must be fixed in a way that reverse messages
will follow the same path. REGISTERs must be stored along with the transport address from which they came.
Frequent re-registration must be enforced to keep NAT-bindings alive. Eventually RTP anchoring must be enabled.
The configuration fragment is shown in the Figure A-rules for traffic coming from outside.

Fig. 49: A-rules for traffic coming from outside

When requests pass the SIP proxy and come again from the inside network to the SBC, the addresses in them must
be reverted to the form used initially by SIP User Agent. The configuration fragment is shown in Figure A-rules
for traffic coming from inside.

Fig. 50: A-rules for traffic coming from inside

Eventually RTP anchoring is turned in in C-rules for calls going to the public network, as shown in Figure C-rules
for traffic leaving for outside.

10.11. NAT Traversal 126

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 51: C-rules for traffic leaving for outside

10.12 Registration Caching and Handling

ABC SBC’s registration cache mediates the registration flow between SIP User Agents and SIP registrars. It keeps
track of SIP User Agent contacts and shields SIP registrar from overload. It also facilitates NAT traversal. In case
a user agent is located behind a NAT it will use a private IP address as its contact address in the Contact header
field in REGISTER messages. This non routable address would be useless for anyone trying to contact the user
agent from the public Internet.

Fig. 52: SBC and NAT traversal: Registration handling

In order for a SIP User Agent to be reachable the ABC SBC will manipulate its registration information. The SBC
remembers the User Agent’s transport address and replaces the information in the Contact header with its own
IP address before forwarding downstream, see Fig. SBC and NAT traversal: Registration handling. This is the
information that is then registered at the registrar. Calls destined to the user will then be directed to the SBC. The
SBC then forwards the calls using previously stored information about the User Agent’ transport address and initial
unmodified contacts.

The registration cache implements the following functions:

• Contact fixing: SIP contacts of User Agents behind NATs include private IP addresses which are not routable
from the public Internet. Therefore the ABC SBC rewrites the IP address in the Contacts with its own and
holds the original Contact in its cache. If the ABC SBC connects to multiple networks using multiple IP
addresses, the IP address is used which is associated with the interface over which the REGISTER request
is forwarded. When later incoming requests towards the User Agent reach the ABC SBC, the ABC SBC
restores the original address.

• Keeping NAT-bindings alive. If periodic request-response traffic was not crossing the NAT behind which
the User Agent is located, the NAT address binding would expire and the client would become unreachable.
Therefore the ABC SBC steers User-Agents to re-register often.

10.12. Registration Caching and Handling 127

FRAFOS ABC SBC User Guide, Release 5.5.2

• Registration off-loading. Various circumstances can cause substantial registration load on the server: most
often it is self-inflicted by the keep-alive functionality, but it may be also on the occasion of a registration
storm caused by a router outage, broken client or Denial of Service attack. The ABC SBC fends off such
overload by using high-performance in-memory registration cache that serves upstream registrations at high-
rate, handles them locally, and propagates them down-stream at a substantially reduced rate. That’s the case
if the registrations were to create new bindings, deleting existing ones or if they were to expire downstream.
The propagated registration changes become effective on the ABC SBC only if confirmed by the downstream
server. If a registration expires without being refreshed the ABC SBC issues a reg-expired event.

The following Subsection, Registration Handling Configuration Options, documents the specific actions that im-
plement the cache functionality. Note that the procedures described here refer to individual URI registration as
envisioned in the RFC 3261. Provisioning of bulk registration for PBXs as specified in the RFC 6140 is described
in the Section Table Example: Bulk Registration.

10.12.1 Registration Handling Configuration Options

The ABC SBC can handle SIP registrations in two ways, either caching them locally and forwarding them to a
downstream registrar, or acting itself as a SIP registrar.

If the ABC SBC fronts a registrar, the action Enable REGISTER caching is applied on incoming REGISTERs
from a User Agent to cache and translate its Contacts. On the reverse path towards the User Agent, the action
Retarget R-URI from cache(alias) restores the original Contacts.

• Enable REGISTER caching - cache contacts from REGISTER messages before forwarding, create an alias
and replace the Contact with alias@SBC_IP:SBC_PORT;contact_parameters. This method should only be
applied to REGISTER messages to be forwarded to a registrar. This action has effects only on REGISTER
requests, see Fig. Enable Register caching.

10.12. Registration Caching and Handling 128

https://datatracker.ietf.org/doc/html/rfc3261.html
https://datatracker.ietf.org/doc/html/rfc6140.html

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 53: Enable Register caching

• Retarget R-URI from cache (alias) - Look up cached contact under alias and rewrite the request URI with
it. Apply this action to messages sent to clients whose registration were cached previously using the “Enable
REGISTER caching” action. This scenario is depicted in Fig. Retarget R-URI from cache. When an INVITE
arrives to a user that has previously registered its contact information (UserB) the ABC SBC will forward
the INVITE to the PBX which acts in this case as the SIP proxy and Registrar. The PBX will look for
the registration information of UserB which in this case are aliasB@_SBC-IP_ and use this information for
routing the request. When the INVITE with the Request URI set to aliasB@_SBC-IP_ arrives at the SBC,
the ABC SBC will check its registration cache and retrieve the actual contact information of the user, namely
UserB@2.2.2.2 and use this information as the Request URI and forward the message to this address.

• Parameters: Enable NAT handling:source IP and port of the REGISTER request; Enable sticky transport:
use the same interface and transport over which the REGISTER was received.

Note: if no matching entry is found in the cache, the ABC SBC returns a 404 SIP response.

10.12. Registration Caching and Handling 129

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 54: Retarget R-URI from cache

If the ABC SBC is used as registrar, the two following actions are used instead: Save REGISTER contract for
REGISTERs and Restore contact for incoming requests towards the User Agent.

• Save REGISTER contact in registrar - act as local registrar by saving the contact and replying with a 200
response.

• Restore contact from registrar - use contact stored within internal registrar

10.12. Registration Caching and Handling 130

FRAFOS ABC SBC User Guide, Release 5.5.2

10.12.2 Registrar off-load

Registration throttling can be used in both built-in registrar and registrar-cache modes. The action REGISTER
throttling enforces high re-registration rate towards User Agent Client and a reduced rate towards registrar. The
high upstream rate serves the purpose of preserving connectivity by keeping address binding along the SIP path
alive. The reduced rate on the downstream side makes sure that the connectivity traffic doesn’t overload the down-
stream registrar. The REGISTER throttling action must precede any other REGISTER-processing action, other-
wise its load-reducing function will take no effect:

• REGISTER throttling - force SIP user-agents to shorten re-registration period while propagating the REG-
ISTERs upstream to registrar at longer intervals. This is useful to keep NAT bindings open without imposing
the refreshing load on registrar.

• Parameters: Minimum registrar expiration: expiration time used in direction to registrar. Maximum UA
expiration: maximum expiration time in direction to User Agent Client.

Note that these two parameters have vast impact on the volume of SIP traffic: they steer the registration rates
towards upstream SIP client and downstream SIP registrar.

The Maximum UA expiration “knob” steers the SIP traffic rate between upstream SIP client and the ABC SBC. It
suggests to the UA at which time interval it shall re-register. The lower value is enforced, the higher the registration
rate will be. The SIP standard suggests one registration per hour which is not good enough to keep NAT bindings
alive. Forcing the re-registration interval down to 180 seconds will cover a satisfactory share of population behind
NATs. Further reducing the re-registration window will cause substantial increase in bandwidth consumption. See
Section SBC Dimensioning and Performance Tuning for additional details. Note that non-compliant SIP clients may
fail to honor the recommendation provided by the ABC SBC and register less often. The ABC SBC will still keep
their registration bindings alive and allow incoming traffic to them. However IP and transport layer connectivity
may not stay alive without the intense traffic. Contacts of such disobedient clients will show red expired status in
the Registration cache window as shown in Figure Client-side Expired Registration Contact.

The Minimum registrar expiration “knob” steers how much SIP traffic passes through to the downstream regis-
trar. Basically this parameter suggests to the downstream registrar how long a registration shall remain valid. The
configured value is recommendatory only: the downstream registrar may accept it or change it in its final responses
to REGISTER requests. The value in the response from the downstream registrar is used as the actual time-to-live
for the cached registration binding. Registration renewals are not passed from the User Agents to the registrar until
this time-to-live is about to expire. The longer this window is, the less traffic will be forwarded to the registrar. On
the other hand, a client’s failure to renew its contact will remain undetected by the downstream registrar and result
in “hanging contacts” if the client is actually unavailable.

In the normal case when reduction of the upstream rate is desirable, the ratio of registrar-to-UA must be
greater than 2.0 – otherwise the server registration window will not be long enough to capture more than
one client registration. Typically the ratio is higher, 10.0 at least. The throttling action MUST be placed
before any other register processing actions to take effect.
It is also important to understand the time-to-live of the cached registered contacts in detail. Briefly, the bindings
stay active for the time requested by SIP registrar in response to forwarded REGISTER requests. They will be
deleted if any of the following conditions occurs:

• the UAC fails to re-register its contact before the time-to-live of the contact set by the downstream registrar
expires. That also means that a failure of a User Agent Client to renew its contact within the “client window”
are tolerated by the ABC SBC as long as the time-to-live period is not over. A “reg-expired” event is gen-
erated. Example of a registration cache view when only the “UAC-side” timeout expires is shown in Figure
Client-side Expired Registration Contact.

• the UAC explicitly de-registers using procedures described in RFC3261. In this case a “reg-del” event is
generated.

10.12. Registration Caching and Handling 131

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 55: Client-side Expired Registration Contact

10.12.3 Registration Caching and Handling by Example

To enable registrar caching, you must let all REGISTER requests be processed by using the actions REGISTER
throttling ** and ** Enable REGISTER caching. The throttling action takes additional parameters: Minimum
registrar expiration and Maximum UA expiration. The former specifies the “throttle” which reduces the regis-
tration traffic propagated towards a registrar. The value is normally in order of tens of minutes, we chose a whole
hour in our configuration example. The other parameter, Maximum UA expiration, determines the traffic pace
towards the SIP User Agents. The value is normally in order of minutes to keep REGISTER messages flowing
and holding IP connectivity through firewalls and NATs upright. We chose an extremely aggressive value in our
example, half a minute.

Figure Registrar handling shows a screenshot with such a 3600/30 throttling ratio configuration. The rules are part
of a “public” realm serving REGISTERs coming from the public Internet.

10.12. Registration Caching and Handling 132

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 56: Registrar handling

You also need to configure how incoming messages for the registered users will be processed. Particularly the URIs
coming back in incoming requests must be recovered to the original form in the initial REGISTERs received by
the ABC SBC. To do so, enable the action Retarget R-URI from cache, with the enable NAT handling option
turned on for all traffic routed to the public realm. The configuration is shown in Fig. Restoring cached contacts.

10.12. Registration Caching and Handling 133

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 57: Restoring cached contacts

With this configuration in place, the actual SIP call flows may appear like in the following diagram Call Flow
Registration Throttling.

10.12. Registration Caching and Handling 134

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 58: Call Flow Registration Throttling

The example sequence shows the primary function of the registration throttle: increasing the traffic towards SIP
User Agent (left-hand side) and reducing it towards the registrar (right-hand side). It also demonstrates how SIP
equipment may differ from the expected traffic pattern and how the ABC SBC will deal with it.

The sequence begins with an initial REGISTER. The SIP telephone proposes a “time-to-live” in the message, 600
seconds in this example. (The SIP message element is really called “expires” but we found the “TTL” name more
explanatory.) The ABC SBC chooses to send the traffic to downstream registrar less often, and overrides this value
to a longer period of 3600 seconds. The registrar downstream finds it too high though and agrees to keep contacts
for only 1800 seconds in its 200 SIP response. Now the ABC SBC knows how often it must refresh the registrations
downstream: every half an hour.

In the direction towards the client, the ABC SBC compels the client to re-register more often by advertising it
would only keep the registered contacts for no longer than 30 seconds.

10.12. Registration Caching and Handling 135

FRAFOS ABC SBC User Guide, Release 5.5.2

As a result, the client keeps registering every half a minute, and the ABC SBC passes on the registration to the
downstream registrar every half an hour. If the client is late with a renewal request, the address binding remains
in ABC SBC registrar cache. If the client is however re-registering too late with respect to the registrar TTL, the
cached registration will expire, same way like of there was no cache. The late re-registration will then create a
newly registered contact.

10.12.4 Registration Agent

The ABC SBC can register itself with a third-party service using a SIP address of record. That allows it to re-
ceive incoming requests for this address subsequently. The ABC SBC does so by sending REGISTER requests
periodically and authenticating them if challenged to do so. This may be for example useful, when an ABC SBC
installation is configured to use the built-in conference bridge and is also supposed to serve calls from PSTN coming
via a SIP-2-PSTN service.

Please note that if transport is needed to be specified, the Next Hop “host:port/transport” can be used.

10.12. Registration Caching and Handling 136

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 59: Screenshot of Registration Agent Configuration

The status of registration agent can be inspected under “Monitoring → Registration Agents”. For more infor-
mation see Registration Agents in Live ABC SBC Information section.

10.12. Registration Caching and Handling 137

FRAFOS ABC SBC User Guide, Release 5.5.2

10.13 Call Data Records (CDRs)

The ABC SBC generates Call Data Records (CDRs) for every call processed by the SBC.

For syslog & conference CDRs (experimental), please refer to New restify CDR process.

10.13.1 CDRs Location

CDRs are generated into the directory:

/data/cdr/

They are generated on Source Realm basis, so every CDR is filtered to a specific file with the name „cdr-
source_realm_name.log“. All CDRs also go into one combined file called „cdr.log“.

CDR output files are rotated once a day at midnight and exported to the archive directory: :

/data/cdr/export

The exported files are renamed to include the date and time – e.g. ” cdr.log-201207011200“. The files are stored
for 93 days by default and then are deleted from the disk.

The number of daily rotated files to keep and also the directory for exported files can be changed using Config /
Global config, using settings under “CDRs” tab. The lowest possible number of days to keep the exported CDR
files is one day.

10.13.2 CDR Format

CDRs are stored in CSV format and contain following items in given order:

• Source Realm

• Source Call Agent

• Destination Realm

• Destination Call Agent

• From user part

• From host part

• From display name

• To user part

• To host part

• To display name

• Local tag (ID for call)

• Timestamp when the call was initiated (format - 2012-05-04 02:22:01)

• Timestamp when the call was connected (format as above)

• End Timestamp of the call (format as above)

• Duration from start to end (sec.ms)

• Duration from start to connect/end (for established/failed call; sec.ms)

• Duration from connect to end (for established call; sec.ms)

• SIP R-URI

• SIP From URI

10.13. Call Data Records (CDRs) 138

FRAFOS ABC SBC User Guide, Release 5.5.2

• SIP To URI

CDR example:

pstnprovider.com,gw1,mobile.com,uas,"alice","example.com","","bob","192.168.1.4","",
"6D47CCAA-4FF10747000824C5-80299700","2012-07-02 04:28:23","2012-07-02 04:28:28",
"2012-07-02 04:28:33","10.139","4.895","5.244","bob@192.168.1.4:6000",
"alice@example.com", "bob@192.168.1.4"

10.13.3 Access to CDRs

CDRs can be accessed from the host where ABC SBC container is running, under the container filesystem /data/cdr
sub-directory.

To get only exported files (i.e. files that are not updated any more and are ready for post-processing), use the
/data/cdr/export sub-directory.

10.13.4 Customized CDR Records

The content of CDR records can be changed using configuration file :

/etc/sems/cc_syslog_cdr.conf

Only the value of „cdr_format“ option (the CDR structure) can be changed. Changing any other options may cause
CDR subsystem malfunction and should be done by authorized person only.

After changing the CDR configuration file, the SEMS process of the ABC SBC needs to be restarted manually.

Following items can be used in cdr_format option:

• $srcrlm.name - Source Realm

• $srcca.name - Source Call Agent

• $dstrlm.name - Destination Realm

• $dstca.name - Destination Call Agent

• caller_id_user - From user part

• caller_id_host - From host part

• caller_id_name - From display name

• callee_id_user - To user part

• callee_id_host - To host part

• callee_id_name - To display name

• $ltag - Local tag (internal call identifier)

• $start_tm - Timestamp when the call was initiated (format - 2012-05-04 02:22:01)

• $connect_tm - Timestamp when the call was connected

• $end_tm - End Timestamp of the call

• $duration - Duration from start to end (sec.ms)

• $setup_duration - Duration from start to connect/end (for established/failed call; sec.ms)

• $bill_duration - Duration from connect to end (for established call; sec.ms)

• sip_req_uri - SIP R-URI

• sip_from_uri - SIP From URI

10.13. Call Data Records (CDRs) 139

FRAFOS ABC SBC User Guide, Release 5.5.2

• sip_to_uri - SIP To URI

• disposition - Result of call establishment. Possible values: answered, failed, canceled.

• invite_code - Result code of final reply to initial INVITE (not set for canceled calls).

• invite_reason - Reason phrase of final reply to initial INVITE (not set for canceled calls).

• hangup_cause - Reason for the call termination, set for established calls only. Possible values: BYE, reply,
no ACK, RTP timeout, session timeout, error, other.

• hangup_initiator - Reason for the call termination. It is set for answered calls only where hangup was caused
by request (BYE) or in case of call was terminated because of local error. Possible values: caller, callee, local

• ucid - Unique Call Identifier. Can be used to map CDRs for transferred calls together. The value is common
for all CDRs generated for calls that are results of unattended call transfer from one original call done by the
ABC SBC.

• call variable - $gui.<call variable name> - Allows to write user specified call variable into CDR. For exam-
ple $gui.experimental_variable will write the value of experimental_variable into CDR. These outputs are
located under “/data/cdr/cdr.log”. The call variable can be set using “Set Call Variable” action, see Binding
Rules together with Call Variables for more details on using call variables.

Please make sure “List of call variables added into events:” section is filled by requested call variable to see in
CDR. Under “Call Events” table, ADVANCED button should be clicked to be able to see call variable on Monitor
as requested.

Important: CDRs are written using syslog and split into per-realm files according to first item that is expected to
be the source Realm. If you change the CDR format the way the first item is not a “realm” name, the files will be
named according to the values in this column and won’t represent per-realm data any more.

10.14 Advanced Use Cases with Provisioned Data

The ABC SBC can be integrated with external or internal sources of data and logic. This allows to complement its
rigid rules-based logic with richer and more complex applications provisioned by the administrator.

The following methods are available:

• Generic RESTful queries to an external server using the Read call variables over REST action. Using this
interface allows to drive the ABC SBC behavior using in-house developed business logic located in external
web programming environments. see Section RESTful Interface for more details.

• Provisioned tables. Solving some problems with tabular nature, like Least-Cost-Routing, Blacklisting, Dial
Plan Normalization or SIP Connect Bulk Registration is much easier if tables are provisioned separately
from the rules. For this reason the ABC SBC supports on-board provider-provisioned databases. See Section
Provisioned Tables for more details.

• ENUM queries using the Enum query action , as described in the section ENUM Queries. This method
allows for a number-to-URI translation using the DNS-based ENUM queries.

10.14.1 RESTful Interface

The RESTful interface embedded in the ABC SBC allows high programmability of the SIP Session Border Con-
troller.

The interface addresses an important dilemma for operators: how to introduce new scenarios, while preserving
the existing ones intact. Hardwired product logic compels the operators to request code changes from vendors.
Change requests result in unavoidably tedious process, weeks or months of negotiation, changes of changes and
delays regardless how small and reasonable the changes are. Therefore ABC SBC comes with the possibility to
implement business logic outside the product in an operator-controlled environment.

This capability follows a general trend in which the business logic is concentrated in a single place that defines
behavior of relatively “dumb” network elements. The business logic defines security policies (who can call whom),

10.14. Advanced Use Cases with Provisioned Data 140

FRAFOS ABC SBC User Guide, Release 5.5.2

marketing campaigns (at what price), and network behavior (how to route the calls). Placing this logic in a web
server relieves operators from inadequate vendor dependencies and allows PHP, Perl, and virtually any web pro-
grammer to implement new SIP scenarios in a well understood programming environment.

The operation of a RESTful application is simple and consists of three steps characteristic for any computer pro-
gram. The steps are depicted in Figure RESTFul Call Flow: The ABC SBC receives an incoming INVITE on
input in the first step A, processes it in step B, and generates a correctly processed INVITE on the output in step C.
The processing in step B is split in three phases: - B.1: RestFul query is formulated that contains all pieces of SIP
information needed to execute the web-based logic. The information is passed in form of URI parameters to the
RESTful server. - B.2: The RESTful server performs the application logic. - B.3: Eventually the RESTful server
sends an answer back to the ABC SBC. The answer contains an array of variables that represent an advice to the
ABC SBC how to handle the message in the final step C.

Fig. 60: RESTFul Call Flow

10.14. Advanced Use Cases with Provisioned Data 141

FRAFOS ABC SBC User Guide, Release 5.5.2

RESTful Interface using Digest Authentication Example

In this example we show how to outsource digest authentication to the external RESTful server. This relieves the
ABC SBC of implementing a user:password database. It is even designed in a way that leaves the ABC SBC
unaware of the cryptographic authentication protocol: all it does is it shuffles header-fields back and forth.

Background: digest authentication in SIP works by conveying shared password from client to server in a hashed
form. If both client and server hash the password and obtain the same result, identity of client is proven without
sending the password in clear-text.

The whole process follows the steps outlined above. It begins when a SIP request comes in. (only fragment shown):

INVITE sip:music@abcsbc.com SIP/2.0.
Via: SIP/2.0/tcp 192.168.178.22:54251
From: "foo" <sip:foo@abcsbc.com>;tag=0omQsGfHsCtP8-5k2.t4uJI3ekc66bGZ.
To: <sip:music@abcsbc.com>.
CSeq: 14693 INVITE.
Proxy-Authorization: Digest username="foo", realm="abcsbc.com",
nonce="UP6CiVD+gk0Uyu4WHAv+48ypPC2vjH+6", uri="sip:music@abcsbc.com",
response="560ad1cc8777efa6a6cc1857795ec155".

The INVITE request signals a call from user with address sip:foo@abcsbc.com to address sip:music@abcsbc.com
The ABC SBC checks the request against its rules and initiates the RESTful logic. (see Figure Rule for Evoking a
RESTful query).

Fig. 61: Rule for Evoking a RESTful query

The rule in ABC SBC’s configuration matches by From domain, method and request URI, and therefore processing
is passed to the action “Read Call variables over REST”. ABC SBC is configured to pass several header fields as
URI parameters to the RESTful application. Particularly, the user information relevant to authentication are passed:
Authorization and Proxy-authorization header fields ($H(Proxy-authorization)), request method ($m) and realm.
The domain in From URI ($fh) is used as realm – this way you can build up a multi-domain hosted service, which
will work same for any domain without change.

Now the SBC has received a call, chosen to process it using a web server, the REST can begin by sending an HTTP
query. Let’s see how the query looks on wire. It simply conveys the values chosen in SBC configuration as URI
parameters. Symbols contained in the values are substituted using the escape code %:

GET /2auth.php?method=INVITE&www_auth=&proxy_auth=Digest+username%3d%22foo%22%2c
+realm%3d%22abcsbc.com%22%2c+nonce%3d%22685f3174-6aaf-4337-a9f4-4cf4d1f150ab%22%2c
+uri%3d%22sip%3amusic%40abcsbc.com%22%2c
+response%3d%225b3cc376e815c949bbc084c747a3a55f%22&realm=abcsbc.com HTTP/1.1.
User-Agent: REST-in-peace/0.1.
Host: www.abcsbc.com

When the web server receives this query, it starts an application. In our example we have chosen to build it using
PHP, it could be done same well using Perl, Java, python or any other popular web programming language. In its
own way the interpreter passed the URI parameters to application’s variable and processing begins.

The following PHP code shows key steps during computation. Not all are shown. For a given user, it calculates her
hashed password stored in database and checks it against one coming in the request. If they are equal, it answers
with a 200 answer suggestion, otherwise it advises the SIP server to re-authenticate the user:

10.14. Advanced Use Cases with Provisioned Data 142

sip:foo@abcsbc.com
sip:music@abcsbc.com

FRAFOS ABC SBC User Guide, Release 5.5.2

// simulation of a database query ... ask username and password
$users = array('foo' => '12', 'guest' => 'guest');
// prepare challenge for the case credentials are invalid
// or missing
$challenge='Digest realm="'.$realm.'",nonce="'.new_nonce().'"'

// no credentials supplied? Request some!
if (empty($proxy_auth)) {
print_answer("407", "Authenticate",

"Proxy-Authenticate: ".$challenge,$cmt);
}
// parse the credentials
$data=parse_hf($proxy_auth);
// calculate expected answer
$expected_response=calculate_answer($data);
if ($data['response'] != $expected_response) {
print_answer(“407”, “authenticate”, “Proxy-authenticate”,

$challenge);
return;

};
// otherwise proceed with OK
print_answer(“200”, “ok”);

Now we have an answer: either a positive 200, or a negative 407 with authentication challenge to be passed to the
SIP client through the ABC SBC. If you observe the wire you will see the following HTTP answer:

HTTP/1.1 200 OK.
Date: Tue, 22 Jan 2013 11:58:47 GMT.
Server: Apache/2.2.3 (Debian) PHP/4.4.4-8+etch6 mod_ssl/2.2.3 OpenSSL/0.9.8c.
X-Powered-By: PHP/4.4.4-8+etch6.
Content-Length: 214.
Content-Type: text/html.
.
code=407.
phrase=authenticate.
headers=Proxy-Authenticate: Digest realm="abcsbc.com",
nonce="685f3174-6aaf-4337-a9f4-4cf4d1f150ab"\r\n.

What you see here in clear-text is, that the programmer has stored the processing results into several variables that
are passed back to the ABC SBC rule-base.

We are in the final stage now – the web application has returned processing results back to ABC SBC, the SBC will
evaluate the parameters in its rules and use them in further SIP processing. Particularly, the rule in Figure Rule for
processing result of RESTful query says, if processing ended up with variable code not being equal to 200, the call
will be refused. The negative answer will include parameters determined in the HTTP answer.

Fig. 62: Rule for processing result of RESTful query

Here is the final outcome of our effort: SIP answer calculated in the RESTful server and challenging SIP client to
submit proper credentials:

SIP/2.0 407 Authenticate.
Via: SIP/2.0/tcp 192.168.178.22:54251;received=83.208.91.146

(continues on next page)

10.14. Advanced Use Cases with Provisioned Data 143

FRAFOS ABC SBC User Guide, Release 5.5.2

(continued from previous page)

From: <sip:foo@abcsbc.com>;tag=0omQsGfHsCtP8-5k2.t4uJI3ekc66bGZ.
To: <sip:music@abcsbc.com>;tag=50123210ee9d5f0f8df05cf1f196cfeb-c5a6.
CSeq: 14692 INVITE.
Proxy-Authenticate: Digest realm="abcsbc.com", nonce="UP6CiVD+gk0Uyu4WHAv+48ypPC2vjH+6
→˓"

10.14.2 Provisioned Tables

The ABC SBC rules can refer to an internal database maintained separately from the rules logic. This greatly
simplifies use-cases which would have to be implemented using a large numbers of almost identical rules otherwise.
The typical use-cases include tests if a URI is on a blacklist or list of monitored users, static SIP registrations, Least
Cost Routing tables, definition of dialing plan normalization and more.

The tables are physically located on the ABC SBC machine for highest performance, can be provisioned using the
web interface and can include any number of administrator-chosen attributes in addition to the lookup key. There
is also a possibility to provision the data remotely via RPC or REST API.

There are two types of tables:

• data - general purpose data tables can be queried to fetch specific data associated with a key. The structure
of such tables can be freely defined by the administrator, thus allowing great flexibility. The data tables are
used from A-rules and C-rules.

• routing - specialized routing tables have a list of mandatory attributes that define routing behavior and are
always present. Additional attributes may be added. The routing tables can only be used from B-rules.

Using the tables is as simple as creating a table with the desired structure, filling it with data, looking up a result in
the table from A,B or C-rules by a selected value, and processing the found data entry. The data entry is returned
to the script processing as variables bearing the names of the table columns. The whole process is described in the
following subsections in detail.

Please be aware that restful provisioned tables queries have some limitation compared to the one available via GUI.
The rest matching cannot emulate a case insensitive match as the data are stored in a redis database, while it’s a
SQL for the later one.

Configuring Tables

The process of setting up a new provisioned table consists of the following steps:

• Analysis of the problem to be solved. You need to specify what data you are going to lookup in a table by
what key and how you are going to use the resulting table record.

• Definition of the table structure. This is started from the Web menu under Provisioned Tables → configure
→ Insert new. There you must identify:

– key lookup operator which is one of equal, range, and prefix. The operator defines the method by which
a key is looked up in a table. It is not possible to lookup in the same table using some other method. If
range is chosen, the resulting table will include two key columns for begin and end of a range. If prefix
is used and overlapping choices are found, the longest match is selected.

– table keys and their types. For range and prefix lookup operator just one key could be defined. For
equal operator multiple keys could be defined. The key type is one of uri, number, call-agent, string.
The type is used for syntactical checking when the actual data is entered later. Even more importantly
it is used to determine how the lookup operator is used. Particularly, prefix lookup is sensible for string
types as it discriminates between “0” and “00”. For numerical types, these two values would be the
same.

– and type of table data or route, as explained above.

– There is also Group-by, which can be none or string. The option string allows to add an informational
tag to each entry so that tables can be viewed by groups.

10.14. Advanced Use Cases with Provisioned Data 144

FRAFOS ABC SBC User Guide, Release 5.5.2

– Optionally, any number of additional table named columns can be added, whose type must be chosen
from uri, number, call-agent, string. When the “save” button is pressed, the table structure is created
and becomes instantly ready for filling with data.

• Filling tables with data. This is started from the Web menu under Provisioned Tables → (table name).
On the web page that opens, the link Insert new rules opens a dialog for inserting a new data entry. When
editing the new entry is complete, pressing the “Save” button will store it. A Version 4 UUID (RFC 4122)
is automatically added to every entry for sake of internal data maintenance.

• Completing data entry. To make the ABC SBC understand that the newly created records can be used, the
button Activate Changes must be pressed. This allows editing the tables without interfering with the table as
currently being used by the ABC SBC. Activate Changes activates the current version of the table for use by
the ABC SBC, and creates a new table version which is used for further provisioning.

• Introducing the table lookup in the rules. This requires adding the action Read Call Variables. The action
takes the table name as the first parameter and lookup value as the second. The lookup value is typically
formed using substitution expressions (see Section Using Replacements in Rules for a reference.)

Provisioned Table Example: Static Registration

We will start with a relatively simple example: static registration. Similarly to how SIP devices use SIP REGISTER
messages to create a temporary binding between SIP Address of Record and actual Contact URI, administrators
can provision a similar association manually and permanently. That means that a table is provisioned and used the
following way:

• The table is keyed by an Address of Record URI and includes the next-hop URI as attribute.

• When a SIP INVITE comes in, its request URI is checked against the table and if the next-hop is found,
replaced with it.

Note that this structure can be used to implement static call-forwarding.

Screenshots of the resulting table structure, table content and rules using the table are shown in the Figures Structure
of Static Registrations, Static Registration Records, and Static Registration Rules respectively.

You can make several observations about the table lookup rule:

• The rule conditions make sure the lookup is only executed for authenticated INVITEs, which helps to elim-
inate unnecessary database queries - there is no point in making the table query for other than INVITE
requests. If authentication is requested, the lookup for the first unauthenticated request would be also use-
less.

• The table entry is looked up by the replacement expression “$r.” which stands for the current request URI.
The result is returned in variable next_hop, as defined in the table column name.

• If no result is found, the table lookup placed in the rule’s condition will return FALSE and no action will not
be performed.

• If a result is found, we apply two actions: change request-URI and add a header-field for troubleshooting
purposes. Its presence in the outgoing INVITE shows a lookup was performed, the request-URI which was
used as key and the returned value.

10.14. Advanced Use Cases with Provisioned Data 145

https://datatracker.ietf.org/doc/html/rfc4122.html

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 63: Structure of Static Registrations

10.14. Advanced Use Cases with Provisioned Data 146

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 64: Static Registration Records

Fig. 65: Static Registration Rules

Provisioned Table Example: URI Blacklist

Simple tables can have a great use. In this example we test presence of a SIP element value on a list. That means
that the table only includes keys, with which no additional values are associated. We then look up the elements in
the keys. That can be used to implement scenarios involving all kind of discrimination like:

• Call recording: is a call coming from a user whose calls shall be recorded?

• Domain discrimination: is a call being routed to a listed domain for which some header fields must be
removed or appended?

• URI Blacklisting: is the caller blacklisted?

The following screenshots show the configuration of the URI-blacklisting example: Figure URI Blacklist Structure,
Figure URI Blacklist Content, and Figure Blacklisting Rule. The rule is simple: If the SIP URI in the From header-
field matches a URI in the blacklist table, the request is declined using a 403 response. Note that the lookup
key is concatenated using “sip:” and “$fu”, because the replacement expression $fu does not include a protocol
discriminator.

10.14. Advanced Use Cases with Provisioned Data 147

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 66: URI Blacklist Structure

Fig. 67: URI Blacklist Content

Fig. 68: Blacklisting Rule

Table Example: Dialing Plan Normalization and Least-Cost-Routing

This is a two-in-one example showing two tables that are usually cascaded behind each other: normalization of a
PBX dialing plan and least-cost routing.

Telephone numbers as used within a PBX can have different forms, following local national conventions and en-
terprise policies. For example, a typical user of a PBX in Munich dials with three leading zeros followed by
international and area code to reach an international destination, two zeros followed by area code to reach des-
tinations within Germany, one zero to reach destinations within Munich metropolitan area, and phone numbers
without leading zeros to reach other PBX users. Using this dialing convention is convenient, the number length
only grows with distance. However, these numbers loose significance if one tried to use them globally say to reach
an international PSTN gateway. Therefore it is useful to normalize them in the E.164 format by stripping leading
digits and introducing an appropriate prefix.

10.14. Advanced Use Cases with Provisioned Data 148

FRAFOS ABC SBC User Guide, Release 5.5.2

The following table shows examples of telephone numbers and how they are normalized for calls from a Munich
PBX:

local number number E.164 equivalent digits to be stripped prefix to be introduced
000140433345678 (US destination) +1-404-333-

45678
3 +

003034567000 (German number) +49-30-3456-
7000

2 +49

078781234 (Munich number) +49-89-7878-
1234

1 +4989

The following screenshots show the configuration of dialing plan normalization: Figure Dialplan Structure, Figure
Dialplan Content, and Figure Dialplan Rules.

Note that the key is defined as string to make sure that prefix “00” in request URI does not match all of “0”, “00”
and “000” as it would if the data type would be numerical.

Fig. 69: Dialplan Structure

10.14. Advanced Use Cases with Provisioned Data 149

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 70: Dialplan Content

Fig. 71: Dialplan Rules

Once the numbers are normalized in the E.164 form, it is also easy to check the destination against a least-cost
routing table to find the most economic PSTN gateway. The table may have the following content: prefix that is
used to march phone numbers, and DNS name of a gateway chosen to serve the matched destination. Longest
match applies which means that the shortest-match is taking lowest precedence and is used as “default route”.

prefix destination comment
+1 us-gateways.com US destinations
+43 austrian-united.com German destinations
+ cheap-pstn.net Everything else

The provisioning process is shown in the following three Figures: Creating an LCR Table, Creating LCR Table
Entries, and Calling the Routing table from routing rules.

10.14. Advanced Use Cases with Provisioned Data 150

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 72: Creating an LCR Table

Fig. 73: Creating LCR Table Entries

Fig. 74: Calling the Routing table from routing rules

10.14. Advanced Use Cases with Provisioned Data 151

FRAFOS ABC SBC User Guide, Release 5.5.2

Table Example: Bulk Registration

Thanks to an extensions of the SIP standard, it is now possible for a PBX to have one digest identity under which it
can serve a whole range of telephone numbers. The extension emerged out of SIP Forum’s effort to create a profile
for PBX interoperability, that became known as “SIP Connect” and standardized as RFC 6140.

The ABC SBC supports these scenarios and it even makes the deployment scenario much simpler than contem-
plated in the RFC. It allows an arbitrary SIP client, PBX, softphone or any other SIP device to authenticate under
a single URI and receive calls for a whole range of telephone numbers. It works “as is” without requiring any of
the “bnc”, “gin” or GRUU extensions.

The following example call flow assumes a network topology in which the ABC SBC guards an internal network,
in which a combined proxy/registrar is located. The administrator has provisioned the telephone number range
7200-7400 to be server be PBX reachable under the URI sip:pbx@abcsbc.com. Note that a similar scenario could
also be implemented using the ABC SBC’s built-in registrar.

The call flow starts with a SIP registration using digest authentication (1)-(4). When an INVITE comes in (5), the
telephone number in the Request URI is translated to that of the PBX (6). This allows the proxy/registrar behind
the SBC to perform user-location lookup and forward to the PBX through the ABC SBC (7). The SBC then, as
usual, retrieves the original URI, whose username is fixed eventually to be the target telephone number (8):

proxy/
Internet |SBC| registrar |SBC| SIP PBX
		(2) REGISTER	(1) REGISTER
		To: pbx@abcsbc.com	To: pbx@abcsbc.com
		m:<sip:a47b6@abc>	Contact:<pbx@10.0.0.1>
		<------------------	<---------------------
		(3) 200 OK	(4) 200 OK
		------------------>	--------------------->
(5) INVITE	(6) INVITE		
sip:7271@any.com	sip:pbx@abcsbc.com	(7) INVITE	
---------------->	x-pbx-user: 7271	sip:a47b6@abc	
	-------------------->	x-pbx-user: 7271	(8) INVITE
		------------------>	sip:7271@10.0.0.1
			--------------------->

To orchestrate this call-flow, the following configuration steps must be taken:

• A number range must be defined and assigned to the URI the PBX owns. This is done using the table-
provisioning feature. The screenshots showing this process are in the Figure Definition of the Number Range
Association and Figure Assignment of a Number Range to a URI .

• In a rule, incoming INVITEs (5) must be tested against the available ranges. If such a range is found, the
request URI must be translated to that owned by the PBX. At the same time the telephone number must
be preserved in a request-URI parameter and/or proprietary header-field (x-pbx-user here), whichever the
registrar behind the SBC can better deal with. (6) The configuration is shown in Figure Assignment of a
Number Range to a URI .

• Before the INVITE is eventually sent to the PBX, it must include the destination telephone number in the
request URI. This is done in a rule that retrieves the phone number from the request URI parameter or
header-field, in which it was stored in the previous step. The configuration is shown in Figure Retrieving the
Telephone number back in request URI .

10.14. Advanced Use Cases with Provisioned Data 152

https://datatracker.ietf.org/doc/html/rfc6140.html
sip:pbx@abcsbc.com

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 75: Definition of the Number Range Association

Fig. 76: Assignment of a Number Range to a URI

Fig. 77: Placing PBX’s Address in request URI and Storing the Original Telephone Number

10.14. Advanced Use Cases with Provisioned Data 153

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 78: Retrieving the Telephone number back in request URI

Provisioning Tables Using RPC or REST API

In the case that the ABC SBC administrator already has a table available, it will be easier to transfer it automatically
to the ABC SBC as opposed to typing it in the web-interface. This can be accomplished using the ABC SBC’s
XML-RPC data provisioning interface.

Check following sections for more information: Sec-XML-RPC-Reference and its xmlrpc_tables sub-section.

The description of REST API can be found in API reference.

10.14.3 ENUM Queries

ENUM (RFC 3761) is a DNS-based phone number database that translates telephone numbers into URIs. For
example, the telephone number +1-405-456-1234 can be translated to sip:mrs.somone@abcsbc.com. This is often
used to find SIP address for a VoIP user when she receives a call from the PSTN under her telephone number.

An ENUM query can be run using the Enum query action. This action queries the default DNS resolvers config-
ured in the SBC host with an Enum query, and sets the request URI to the result.

Fig. 79: Using Enum queries

By using a different domain suffix than the default one (e164.arpa), private enum servers can be queried. This is in
fact the way ENUM is widely used – as of today, no public ENUM service with global coverage has emerged.

The result of the Enum query can be tested using the Last Action Result condition. If it returns true, the ENUM
query returned a URI, false is returned otherwise. In case of success, the ENUM-returned URI has rewritten the
request-URI and may be rewritten using the ($rU) replacement expression.

10.15 SIP-WebRTC Gateway

WebRTC is a relatively new protocol suite added to the VoIP technology that makes a telephone out of every
capable web browser. As a result, users can click-to-dial a company representative, easily access video-telephony
from within other web applications and receive calls from any web-browser, be it on their PC, smartphone or
Internet cafe.

All of that while enjoying confidentiality widely available to consumers as never before in telephony’s history.
Both analog and digital telephony were inherently insecure, mobile telephony secured at least the wireless hop, yet
rather weekly. SIP’s security protocols, PGP, S/MIME and Identity (RFC 4474) desperately failed to be adopted.
With WebRTC, we have proven web-based cryptographic protocols that just work!

10.15. SIP-WebRTC Gateway 154

../../sbc-api/index.html
https://datatracker.ietf.org/doc/html/rfc3761.html
sip:mrs.somone@abcsbc.com
https://datatracker.ietf.org/doc/html/rfc4474.html

FRAFOS ABC SBC User Guide, Release 5.5.2

The key missing piece for connecting Web clients to the SIP telephony is a SIP-WebRTC gateway – see the left-
most element in the Figure Integration of RTC, SIP and PSTN Networks using the RTC Gateway. The gateway
connects the populations of web users, SIP telephony users and traditional telephony users behind PSTN gateways.
The gateway also provides a practical and yet fairly secure communication model: on the “internal” SIP-based side
of the gateway, traditional IT practices for securing controlled networks can be used, while on the public Internet
facing side proven cryptographic protocols are used. That is where the ABC SBC comes in: its border control
instruments in combination with built-in RTC gateway allow to form a viable security model.

Fig. 80: Integration of RTC, SIP and PSTN Networks using the RTC Gateway

The gateway anchors signaling and media and performs translation between different standards for WebRTC and
traditional VoIP, particularly security, codecs and signaling protocols as shown in Figure WebRTC Gateway Pro-
tocol Stack.

10.15. SIP-WebRTC Gateway 155

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 81: WebRTC Gateway Protocol Stack

Integrating a gateway in a SIP network is fortunately straight-forward. When a SIP-WebRTC gateway is installed
and configured to connect to an existing SIP services (PBX, public SIP service), WebRTC clients can immediately
reach and be reached from the SIP service. The existing SIP service does not need to be modified at all – it treats
WebRTC traffic from behind the gateway as regular SIP traffic.

The rest of this section is split in the following parts: brief introduction to the WebRTC protocols and network archi-
tecture is given in Section WebRTC Network Architecture and Protocols. Configuration of the gateway is explained
in subsequent sections: WebRTC Network Configuration, WebRTC Credentials Configuration, and WebRTC Rules
Configuration. Eventually we provide guidelines for starting an RTC gateway using the Amazon Elastic Cloud ser-
vices in Section Amazon Elastic Cloud Configuration Cookbook. We offer several methods using either predefined
configurations or using manual configuration, and starting a single gateway or a whole failsafe cluster. We also
provide recommendations for starting a geographically-dispersed service.

If you plan to start the RTC gateway service in front of an existing SIP service rapidly, best proceed directly to the
Section Amazon Elastic Cloud Configuration Cookbook.

10.15. SIP-WebRTC Gateway 156

FRAFOS ABC SBC User Guide, Release 5.5.2

10.15.1 WebRTC Network Architecture and Protocols

The WebRTC protocol suite for telephony specifies use of the following protocols:

• G.711 and OPUS (RFC 6716) for audio codecs. Opus is a lossy compression, low-delay, codec with constant
and variable bitrate ranging from 6kbps to 510 kbps. G.711 is legacy PSTN audio codec at 64 kbps.

• VP8 (RFC 6386) for video codec. VP8 is an irrevocably royalty-free codec.

• SRTP (RFC 3711) for secure real-time media transmission.

• DTLS (RFC 4347) for keying. - SIP over Websockets (RFC 7118) as one of possible protocols for signaling.
It is slightly aligned SIP using websockets as transport. It is particularly easy to translate to and from legacy
SIP.

• ICE (RFC 5242), STUN (RFC 5389) and TURN (RFC 6062) for NAT traversal. STUN is a probing protocol
that allows clients to detect how it is reachable over NATs. TURN is a STUN-based protocol that allows a
client behind NAT to allocate a publicly reachable IP address from a server and tunnel traffic from and to it.
ICE is methodology for finding the best combination of IP addresses to communicate between clients.

At the time of publication of this handbook, Firefox (version 23 and above) Chrome (version 28 and above), Opera
(version 20 and above) and Safari (Preview, June 1017) were supporting this protocol stack and have demonstrated
mutual interoperability. Several JavaScript applications1 emerged that implemented signaling using SIP over web-
sockets.

In the simplest scenario, two browsers can use the protocol stack to interconnect with each other. Most of this
document is however concerned with the case when one party is using a WebRTC capable browser, and the other
party is using a SIP phone or a PSTN phone behind a SIP gateway. This is the most complicated and also critical
scenario because it connects the web telephony users to existing population of SIP users. The key component in this
scenario is WebRTC-to-SIP gateway which translates signaling and media between the WebRTC and non-WebRTC
SIP protocol stacks.

The WebRTC clients use the protocol stack is shown in Figure RTCWeb Protocol Flows. Initially the client registers
itself to become reachable for incoming calls. It does so by sending a SIP REGISTER message over websockets.
It is that simple.

1 The JSSIP application is available under MIT License and can be obtained from http://jssip.net.

10.15. SIP-WebRTC Gateway 157

https://datatracker.ietf.org/doc/html/rfc6716.html
https://datatracker.ietf.org/doc/html/rfc6386.html
https://datatracker.ietf.org/doc/html/rfc3711.html
https://datatracker.ietf.org/doc/html/rfc4347.html
https://datatracker.ietf.org/doc/html/rfc7118.html
https://datatracker.ietf.org/doc/html/rfc5242.html
https://datatracker.ietf.org/doc/html/rfc5389.html
https://datatracker.ietf.org/doc/html/rfc6062.html
http://jssip.net

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 82: RTCWeb Protocol Flows

When the browser user wants to make a call, it is a more complicated process. The browser starts the ICE process
in which it learns IP addresses under which it can be reached. The IP addresses include the WebRTC client’s own,
its own as seen on the Internet and learned using the STUN protocol, or even a completely different IP address
belonging to a TURN media-relay. When the browser initiates SIP signaling, it offers all IP addresses learned in
the previous phase. After the called party answers the call, the client probes the IP addresses against the caller to
chose the IP address with best IP connectivity. When the “best” IP address is chosen, an encryption session-key is
generated using DTLS and media is exchanged using SRTP.

The actual media call-flow can vary depending on how the WebRTC application is configured and the actual call-
by-call result of ICE connectivity checks. In a typical scenario deploying FRAFOS gateway, media is sent directly
between the WebRTC client and the gateway. This is shown in the Figure RTCWeb Protocol Flows as the green
dashed-dotted line. However, the WebRTC application can be also configured to communicate using a TURN
server which introduces another hop to the media path. That’s the dashed green line in the Figure. It can be for
example useful if one wishes to relay media using TCP protocol. It can also occur that both call parties are WebRTC
clients on the same subnet and media can flow the shortest-path between them – shown as solid line in the Figure.

However, in scenarios using the gateway the most practical client configuration choice is to limit ICE process to its
own IP address. That eliminates gathering the STUN and TURN choices and greatly reduces “post-pickup delay”,
i.e. the period of time between when the caller answers and media can be actually heard and seen.

10.15. SIP-WebRTC Gateway 158

FRAFOS ABC SBC User Guide, Release 5.5.2

10.15.2 WebRTC Network Configuration

This subsection is about what components must be placed in the network and how they must be configured to
enable working WebRTC call-flows. First, the following planning questions must be answered:

• do you want to enable NAT/firewall traversal using media over TCP? This may increase the NAT/firewall
traversal success rate. If so, the TURN server application must be used on the media interface.

• which client do you want to use? The RTC-capable Web-browser alone includes the RTC engine but still
needs an application that uses it. There are various commercial and open-source projects implementing the
VoIP functionality, such as JSSIP.

• do you want to integrate the gateway functionality in an SBC or run it on a dedicated server? We suggest
to use a dedicated server unless you have a good reason for tight integration. With a dedicated server, it
is easy to discriminate WebRTC-to-WebRTC calls from WebRTC-to-RTC, apply different security logic to
WebRTC clients, and avoid interference with legacy-SIP configuration.

• under which IP address and port number will be the websocket interface available? To enable websocket
communication, you must configure an SBC interface and create a Call Agent linked to the interface. The
interface configuration dialog is shown in Figure Websocket Interface Configuration. The most important
element is “Interface type” which must be set to “websocket signaling”. The Call Agent configuration is
shown in Figure Websocket Call Agent Configuration. By setting its interface to the previously created
websocket interface and its IP address to “All” (0.0.0.0/0), it captures every WebRTC clients communicating
with the ABC SBC using websockets.

10.15. SIP-WebRTC Gateway 159

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 83: Websocket Interface Configuration

10.15. SIP-WebRTC Gateway 160

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 84: Websocket Call Agent Configuration

10.15.3 WebRTC Credentials Configuration

Confidentiality of calls by encryption is one of the major WebRTC features. Fortunately, it is rather easy to config-
ure. DTLS-SRTP is always enabled in current version of ABC SBC (in previous versions there was possibility to
disable it). All other configuration options are optional. Such configuration is shown in Figure SRTP Configuration
Page.

Fig. 85: SRTP Configuration Page

10.15. SIP-WebRTC Gateway 161

FRAFOS ABC SBC User Guide, Release 5.5.2

When no further options are selected, the ABC SBC creates ad-hoc self-signed credentials. A particular advantage
of these is the length of resulting DTLS-SRTP packets will be bellow 1500-bytes packet length which is almost
always certain to traverse networks without IP fragmentation.

If you prefer your own certificates, you must upload them using the “DTLS certificate file” and “DTLS private key
file” global config options (located under Misc tab).

Note that some credentials may result in too long DTLS-SRTP packets. If they exceed the length of 1500 bytes,
they will be most likely fragmented and may result in failure to set up media channel. This is almost certain if there
are NATs along the communication path.

10.15.4 WebRTC Rules Configuration

The configuration of the rules for SIP-WebRTC gateway must address both generic SIP processing aspects, which
is routing and NAT traversal, and then specific aspects of WebRTC interworking.

In this configuration example we assume topology shown in Figure RTCWeb Protocol Flows, two types of calls:
WebRTC-to-RTC and RTC-to-WebRTC, and media flowing through the ABC SBC along the dash-dotted green
line.

The SIP routing flow is rather simple in this scenario: every call coming from the WebRTC Call Agent (i.e. over
the websocket interface) will be routed to a SIP PBX, and reversely every call coming from the PBX will be routed
to RTC browsers using websockets. The routing configuration is shown in Figure SIP-WebRTC Gateway Routing
Rules.

Fig. 86: SIP-WebRTC Gateway Routing Rules

The task of A and C rules is to anchor media to itself and to determine when to convert calls from RTC to SIP
and vice versa. Therefore we create two realms: one for RTC clients and one for SIP clients. For each of them,
we create one Call Agent that captures all traffic from/to any IP address flowing through the websocket and SIP
interface respectively. The actions are configured to accommodate the following policies :

10.15. SIP-WebRTC Gateway 162

FRAFOS ABC SBC User Guide, Release 5.5.2

Realm Direction Policy (Actions)
RTC A-rules

• enforce frequent re-
REGISTERs to keep
persistent TCP connections
for websockets alive (REG-
ISTER throttling)

• cache registrations to for-
ward SIP calls for RTC
clients properly (Enable
REGISTER caching)

• fix NAT bindings (Enable
Dialog handling)

• anchor media, offer ICE
and RTC Feedback to RTC
clients (Enable RTP Anchor-
ing)

RTC C-rules
• anchor media (Enable RTP

Anchoring)
• enforce SRTP using DTLS

keying (Force RTP/SRTP)

SIP A-rules
• lookup registered RTC user,

decline the call if offline (Re-
ply to request with reason
and code, Retarget R-URI
from cache (alias)))

• anchor media, don’t offer
ICE to SIP callers (Enable
RTP Anchoring)

SIP C-rules
• anchor media (Enable RTP

Anchoring)
• enforce plain RTP on the

way to the SIP Call Agent
Force RTP/SRTP

We have met most of the rules in previous sections: driving re-registrations high to keep transport-layer connections
alive, caching registrations, fix bindings and anchor media. Now we need to include the specifics of SIP and RTC
interworking. SIP calls towards RTC clients must appear RTC-capable, i.e. they must offer SRTP encryption, ICE
connectivity checks and RTC feedback. Reversely, the RTC calls to SIP must be transformed to plain RTC.

The “Force RTP/SRTP” action determines if plain RTP or SRTP is used for a call. When this action is placed in
C-rules, it converts media for the called party into the enforced protocol. When SRTP is chosen, one must set an
additional option: the keying protocol. Only DTLS makes sense for RTC. In our example we convert all media
traffic towards SIP devices by placing “Force RTP” in SIP realm’s C-rules. Analogically we convert all media
traffic towards RTC clients by placing “Force SRTP” in RTC realm’s C-rules. The “Force SRTP” action is using
“DTLS” as the keying option because that’s the keying protocol standardized for use with RTC.

One could also use the “Force RTP/SRTP” action in A-rules: here however it only determines if the caller’s SDP
offer complies to the enforced preference and rejects the call otherwise. We are not using this kind of admission
policy in our example.

The other options specific to the RTC interworking use-case are specific to how we anchor media. We need to make
sure that RTC clients relying on ICE will receive proper STUN answers for their connectivity checks towards the

10.15. SIP-WebRTC Gateway 163

FRAFOS ABC SBC User Guide, Release 5.5.2

built-in media relay and also RTC feedback. Therefore, we turn the options “offer ICE” and “offer RTCP feedback”
on in the media anchoring action for both RTC A-rules and C-rules. The A-rules make sure that incoming RTC
call offers obtain ICE and RTC/F capable answers, the C-rules ensure that SDP offers towards the RTC clients will
be also ICE and RTC/F capable.

The resulting configuration is shown in Figures Configuration of RTCWeb Rules for RTC Realm and Configuration
of RTCWeb Rules for SIP Realm for the RTC and SIP realm respectively.

Fig. 87: Configuration of RTCWeb Rules for RTC Realm

10.15. SIP-WebRTC Gateway 164

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 88: Configuration of RTCWeb Rules for SIP Realm

Note that this configuration works even if two WebRTC clients connect to each other through the gateway. However
the WebRTC-to-RTC conversion and forwarding to the SBC still takes place resulting in an WebRTC-to-RTC-to-
WebRTC loop,as shown in Figure The WebRTC-to-WebRTC Loopback.

10.15. SIP-WebRTC Gateway 165

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 89: The WebRTC-to-WebRTC Loopback

Optionally it may be useful to manage codec negotiation. For example, one could blacklist G.711 in favor of OPUS,
if there are SIP clients that can speak the codec. Or video could be stripped off, if there is no support for royalty-free
VP8 codec. Note though that if codecs are stripped too aggressively, a SIP user agent may fail to interoperate and
return a 488 in UAS or an immediate BYE in UAC role.

10.15.5 WebRTC Interoperability Recommendations

The WebRTC standard and implementations are relatively new and as result degree of interworking largely depends
on network configuration and used client. Unfortunately interoperability is still changing with every new version
of WebRTC stack and the clients built upon it.

Network complications typically arise when there is a “middlebox”, an Application Layer Gateway (ALG) or an
HTTP proxy in the path. This sort of network equipment manipulates HTTP traffic in a way that may impair inter-
operability. If the middlebox cannot handle the websocket extension of the HTTP protocol, signaling connection
will fail. Therefore the default transport protocol for SIPoWebsockets is TLS.

WebRTC application complications typically arise when the application has imperfect support for the SIP protocol
running on top of websockets, and/or changes its behavior with a new software version. *We urge our customers
to test extensively the client application before initial deployment of a WebRTC service AND during an
update to a newer version.*
The most “fluid” interoperability difficulty is continuous changes to the WebRTC protocol stacks hidden insider
the browsers. Almost with every browser release, some minor changes appear that impair interoperability. Until
the environment becomes more stable, typical reaction is reverse analysis of the new interop behavior and using
ABC SBC mediation features to address it. For example, Chrome browsers Version 39.0 and higher are known not
to handle “early media” correctly. The ABC SBC configuration allows to mediate “183 early media” into regular
“180 ringing” as shown in Figure WebRTC Mediation Example.

Fig. 90: WebRTC Mediation Example

10.15. SIP-WebRTC Gateway 166

FRAFOS ABC SBC User Guide, Release 5.5.2

In summary, while the industry is converging to a solid level of interoperability, thorough effort during initial and
regression tests is highly recommended.

10.16 Amazon Elastic Cloud Configuration Cookbook

An easy way to start and run an RTC gateway is “off a cloud”, i.e. on a hosted platform, without purchasing and
operating own physical infrastructure: computers, racks, disks and IP connectivity. A single click is enough to start
a service, of course as long as you keep paying for the cloud services. Whereas there are many “cloud platforms”,
we focus on running the RTC gateway on the Amazon Web Services (AWS) platform in this section.

The AWS platform is a mature system that allows, among many other useful things, to start and run pre-built virtual
machines, load-balance traffic among them, monitor their health and scale the infrastructure up and down to be on
par with user load. Applications, RTC-to-SIP gateway in our case, come pre-installed ready-to-start in form of a
virtual machine image, called AMI (Amazon Machine Image).

The FRAFOS RTC gateway installation is pre-configured to address a simple yet useful scenario: add RTC con-
nectivity to a running SIP PBX service. Once started, the RTC gateway passes RTC registrations and calls coming
from RTC clients down to the PBX(s). Reversely, the gateway routes calls coming from the SIP PBX(s) to the
previously registered RTC browsers. No further configuration is needed.

The following subsections describe how to start the RTC-to-SIP gateway service off the amazon platform. We
offer you several ways to do the same: the easiest is launching a cluster using Cloud Formation template. This way
you create a load-balanced scalable infrastructure by pressing a button without any further knowledge of how the
components must be configured. If you want to understand in more detail how the gateway works, you can launch
a single-instance service and/or configure it in detail step by step.

We suggest you explore our demo site https://go.frafos.com. It includes additional information about use of AWS
and WebRTC technologies, including live services and ready-made demo AMIs and Cloud Formation Templates.
These can be launched by a single click without any need for further configuration. Note that the demo versions
have a 90-seconds limitation to maximum call duration.

10.16.1 Before you Start: Prerequisites and Important Warnings

Before you start, you shall have the following:

• Amazon Web Services (AWS) account. Note that the accounts come with several service plans charged at
different levels, and credit card number and a telephone must be ready to verify identity and payment. Go to
http://aws.amazon.com to sign up.

• AWS Elastic Cluster SSH keypair. This is important to be able to administer the virtual machines remotely.
If you haven’t created or uploaded one, do so under “EC2→Keypairs”. If you want to start the services in
multiple regions, make sure that you have a keypair for every region before you start.

• Amazon Machine Image (AMI) with the RTC-2-SIP gateway from FRAFOS. You will find the right one for
your geographic region on our experimental web page, https://go.frafos.com/.

• RTC-enabled browser for testing. Latest version of Chrome has been tested by FRAFOS to play well, yet
there are other implementations as well.

• Optional: Publicly available SIP service and a SIP account. You need to have a SIP URI and password
with a SIP service to be able to make calls through the RTC-to-SIP gateway. Otherwise you can only make
anonymous calls.

• Optional: a DNS name under which your RTC-to-SIP gateway will be reachable

To begin visit our experimental web page https://go.frafos.com/. The web page contains predefined links to avail-
able AMIs that allow you to launch quickly.

Note: IMPORTANT: USE OF AMAZON WEB SERVICES WILL INCURE ADDITIONAL COST. ALL DATA
CREATED AND STORED ON AN INSTANCE SUCH AS PROVISIONED TABLES, ABC RULES, CONFIG-

10.16. Amazon Elastic Cloud Configuration Cookbook 167

https://go.frafos.com
http://aws.amazon.com
https://go.frafos.com/
https://go.frafos.com/

FRAFOS ABC SBC User Guide, Release 5.5.2

URATION PARAMETERS, LOG FILES AND MORE REMAINS ON THE INSTANCE AND WILL BE LOST
UPON INSTANCE TERMINATION.

10.16.2 Quick Start Using Cloud Formation

The ultimately fastest way to launch your service is using amazon’s Cloud Formation. The Cloud Formation
amazon.com service is used to quickly start a whole network based on a description included in a template. The
template includes information about virtual instances, how to scale them up and down, how to spread the load across
them using a load-balancer, and what firewall policy to use to filter IP traffic: quite some work if administrator was
setting all of this up manually.

FRAFOS has created a starter template to be used to start a fail-safe cluster of one-to-four gateways behind a
load-balancer. The template is available on our site, https://go.frafos.com.

During the process you will be prompted for very few parameters. Their scope can change as we keep developing
the template and for most cases they are best served by leaving them to their default values. The only required
parameter you must set is the name of your SSH key. Once you start the cloud formation process, it takes several
minutes until it completes. After the stack is launched, you will have one load-balancer and one to four gateways
running behind it. A URI shown upon completion of the cloud formation process will allow users to download
a demo JavaScript application and start using the service. Sometimes you may need to be patient for a couple of
minutes until the service is really “warmed up”.

When trying to place your first phone call, you may for example try to call sip:music@frafos.net. When opening
the web-page, allow the browser to accept self-signed certificate and use your microphone and camera.

Fig. 91: Screenshot: First Browser Call to music@frafos.net

Also you can try out the built-in audio conferencing bridge by dialing an 8-digit number prefixed with *. Anyone
calling the same address will appear in the same conferencing room.

As the next steps, you can follow the links that show in the Cloud Formation Output window: a WebRTC web
telephony application and the ABC Monitor (use sbcadmin username and default password). You can also admin-
ister the actual instances by going to their web address “https://IP/”, username “sbcadmin” and password equal to
instance ID. For example, you can review rules that remove video streams between WebRTC and legacy SIP to
allow at least audio where video signaling often fails, or look at the dialing plan for the on-board conferencing.

10.16. Amazon Elastic Cloud Configuration Cookbook 168

https://go.frafos.com
sip:music@frafos.net
mailto:music@frafos.net
https://IP/

FRAFOS ABC SBC User Guide, Release 5.5.2

10.16.3 Quick Start: Launch Single Instance

If beginning with a cluster may appear too heavy start, one can also start a single RTC gateway instance instead.
This can be done also from our site, https://go.frafos.com.

During the process you will be prompted for instance type, detail, used storage and security group. Choose an
instance type with at least 2GB RAM and leave everything else except the Security Group to default. The security
group must be set to permit the following flows from 0.0.0.0/0:

• TCP/5060-5069 — SIP service

• UDP/5060-5069 — SIP service

• TCP/443 - web user interface

• TCP/22 — secure shell

• UDP/10000-11000 RTP media

Eventually chose an existing or create a new key-pair and store the private key securely.

Once the virtual machine is up and running, you can access administrative interface using the https://PUBLIC_IP/.
The administrative username is “sbcadmin”, the password is the ID of your amazon instance. You can also access
remote shell if you login using the private part of the AWS SSH key:

$ ssh -i .ssh/frafos-aws-keypair.pem -l ec2-user 54.171.123.109

If you would like to use additional AWS features that the instance supports, CloudWatch and System Manager,
you must enable an instance role that permits these. An easiest way to do so is to create an AWS/EC2 role with
predefined permissions “EC2 Role for Simple Systems Manager” (AmazonEC2RoleforSSM) and attach it to the
instance.

10.16.4 Updating License

On Amazon Cloud there is an easy way to install centrally a license file that is then used by all newly started
ABC SBC instances. This is practical when you upgrade to a feature-richer license and do not want to configure
the license individually in every new instance. The license is then used by both instances that are newly started
individually as well as via Cloud Formation and AutoScaling. You only need to make sure the license file matches
the AMIs you are using.

After obtaining the license file from FRAFOS support, all you need to do is to enable instance’s access to
Systems Manager (see http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-access.
html#sysman-configuring-access-role) and put the license in a parameter with a well-known name in the Parame-
ter Store. The Parameter Store is located under the EC Dashboard under “System Manager Shared Resources →
Parameter Store”. The parameter name must be “/abcsbc/license” as shown in the screenshot bellow.

Note that setting this parameter does not affect running instances, only applies to the AWS Region for which you
provisioned it, and must include a license specific to the AMIs you are using.

10.16. Amazon Elastic Cloud Configuration Cookbook 169

https://go.frafos.com
https://PUBLIC_IP/
http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-access.html#sysman-configuring-access-role
http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-access.html#sysman-configuring-access-role

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 92: Screenshot: Setting License in Amazon Parameter Store

10.16.5 Introducing Geographic Dispersion

Introducing geographic redundancy and dispersion may be useful to become resilient against regional disasters
and/or decrease VoIP latency. Latency may have major impact on quality of service. For example if an American
user accesses a European RTC gateway to reach an American SIP PBX, media will travel across the Atlantic back
and forth, resulting in noticeable latency and QoS degradation.

Fortunately there is an easy-to-manage way with AWS to build up geographic redundancy for both individual
instances and whole clusters. All that needs to be done is creation of the instances or whole stacks as described
in previous subsections multiple times in different regions, and linking their addresses to a single latency-routed
DNS name. That is a particular feature of Amazon Route53 DNS service, that returns the lowest-latency IP address
associated with a DNS name.

We experimented with this amazon feature and confirmed significant latency savings. In our example, we created
two instances, one located in Ireland, the other in California. We create CNAME records “”eu.areteasea.com” and
“us.areteasea.com” for them. Eventually we created the latency-routed global DNS name entries “world” for both
regions, as shown in Figure Screenshot: Creating DNS Latency-based Routing Records.

Fig. 93: Screenshot: Creating DNS Latency-based Routing Records

10.16. Amazon Elastic Cloud Configuration Cookbook 170

FRAFOS ABC SBC User Guide, Release 5.5.2

Clients trying to open up a connection to “world.areteasea.com” resolve this DNS name to different IP addresses
depending on where they ask from.

One can easily verify the outcome by using services like Cloud Monitor. (http://cloudmonitor.ca.com) Results
shown in Figure Latency Measurements for Multiple Sites Served by Route-53 Latency-Routing prove that proximity
makes a difference. Clients in geographic proximity of the two sites feature minimum latency bellow 50ms: US
from California to Illinois show 30 to 50ms, Western Europe shows 24-37 ms, Ireland 8 ms. Clients located out
of served continents have significantly higher latency, starting with 180ms for Australia, slightly above 200ms for
Argentina and Egypt, and peaking with 329 ms in China – values that make VoIP quality poor.

10.16. Amazon Elastic Cloud Configuration Cookbook 171

http://cloudmonitor.ca.com

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 94: Latency Measurements for Multiple Sites Served by Route-53 Latency-Routing

10.16. Amazon Elastic Cloud Configuration Cookbook 172

FRAFOS ABC SBC User Guide, Release 5.5.2

After we had disabled the European site, all sites began to be served by the Californian server and we observed
increase in minimum latency of European clients up to 160-180 ms, i.e. by about 130 ms! Therefore we recommend
anyone serving global user population to consider establishing presence in multiple amazon’s availability zones.

10.16.6 Monitoring the Autoscaling Cluster Using CloudWatch

Once the cluster is up and running, it may be worthwhile to experiment with its autoscaling behavior and monitor
how the cluster reacts to varying load. There are various ways how you can observe the status of the cluster
using Amazon’s CloudWatch facility. The CloudWatch facility collects data from all related instances and load-
balancers, aggregates it for the whole autoscaling groups and triggers alarms if some critical values are exceeded.
The collected data, how it is aggregated and when it triggers autoscaling alarms is part of the CloudFormation
template definition, so if you started the cluster using the template it is already in place. By default, the autoscaling
alarms add a new instance when it the average CPU load in the cluster exceeds 80% for several minutes, and remove
an instance if it drops bellow 60%.

The interesting data you can observe include the event-by-event history under “EC2 → Autoscaling Group →
Scaling History”, details of autoscaling alarms in the CloudWatch Console, and graphs showing the cluster changes
along a timeline are also found in the CloudWatch console. The rest of this section shows typical autoscaling
situations and how you can inspect them using these monitoring facilities.

The first Figure Screenshot: Scaling History shows example of scaling history. We interpret it in time order from
bottom up. Initially when the Autoscaling process started it launched the first instance at 12:34. Because we kept the
machine busy, some seven minutes later at 12:40 the Autoscaling process chose to reinforce the cluster. It increased
the desired capacity to 2 and launched a new instance. Then we started reboot of an instance to simulate a failure.
The ELB checks detected the unresponsive instance at 12:48, terminated it, and started a new one. Eventually we
relaxed the load, the low-CPU alarm was triggered in response to which the Autoscaling process reduced cluster
size back to one.

10.16. Amazon Elastic Cloud Configuration Cookbook 173

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 95: Screenshot: Scaling History

The next Figure CloudWatch Screenshot: Low Load Alarm shows details of a CloudWatch autoscaling alarm. It
displays a situation when cluster began to be idle after a period of congestion and an alarm is raised to scale the
cluster down. The autoscaling process will remove an instance in response to this alarm.

10.16. Amazon Elastic Cloud Configuration Cookbook 174

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 96: CloudWatch Screenshot: Low Load Alarm

Development can be show in different time-scales using CloudWatch graphs. Figure CloudWatch Graphs: Cor-
relation of Cluster CPU Load and Autoscaling shows how detection of overload and idle conditions affect cluster
size along the time axis. There are three lines in the graph: the orange line shows average CPU load in the cluster.
The autoscaling assessment of needed capacity is shown using the blue-line and the actual number of available
instances is shown using green line. The CPU-load-line leads the changes: it must remain for a period of time
above the threshold of 80% until the auto-scaling process determines to increase the target capacity. It then takes
some time again until the capacity is ready: a new instance must be launched, detected as ready and included in the
load-balancer’s distribution list. Therefore the green line legs behind the blue-line, and the blue-line always legs
behind the orange-line.

Fig. 97: CloudWatch Graphs: Correlation of Cluster CPU Load and Autoscaling

10.16. Amazon Elastic Cloud Configuration Cookbook 175

FRAFOS ABC SBC User Guide, Release 5.5.2

10.16.7 Performance Recommendations

In virtualized cloud environments, performance can vary significantly due to the “sharing” nature of these envi-
ronments. It is therefore advisable to choose properly dimensioned computing instances. Amazon offers several
types of “instance types” that very in various performance aspects. The instance type vary by region and change
over time. Current offering is available on the amazon web page http://aws.amazon.com/ec2/instance-types/.

For minimum density trials, the 2GB RAM T2.small instance type is sufficient. This instance allows very little
CPU capacity in short bursts. However if the allowed burst is exceeded, the virtual machine will slow down to an
extent that it stalls. Experiments with on-board conferencing have shown that a single conference with more than
three participants already brings the machine to stalling.

For predictable performance, you will need a Fixed Performance Instance (FPI) type.

In the mainstream case, when media anchoring is enabled and there is neither transcoding nor encryption taking
place, the critical parameter is the number of parallel calls (PC). Our lab measurements in this configuration have
shown the following capacity for the following instance types available on the Amazon Marketplace: (the instance
parameters are from https://aws.amazon.com/ec2/instance-types/)

Instance Type PC vCPU Mem (GiB) Networking Performance Notes
m3.medium 180 1 3.75 Moderate CPU-constrained
m4.large 372 2 8 Moderate network-constrained

In the less usual case that SIP is processed without RTP, number of call attempts becomes the critical parameters.
This can be the case when the SBC is used as a signaling-only load-balancer. Then choosing a CPU-strong instance
type makes sense. Our tests have shown that the m3.xlarge instance type can deliver 40 Calls Per Second signaling
rate, c3.8xlarge delivers about 500 CPS.

Note that OS-reported CPU-load values may be misleading on virtualized machines. CPU time may be “stolen”
by virtualization hypervisor and system tools may or may not accurately report the status. The more accurate
method to determine actual utilization of the virtual instances is CloudWatch. We recommend that CloudWatch-
observed CPU utilization shall not exceed 80% – if deployed in an Elastic Cluster, this should be the threshold
value triggering autoscaling cluster growth.

10.17 Template parameters

When configuring multiple SBC nodes, it might be needed to use different value in a rule or config variable for
certain nodes or config groups. Template parameters can be referenced in various configuration parameters and
thus allow for building different values for specific nodes or complete config groups. Template parameters are
referenced by their names enclosed by a percent characters (“%”). For example: %my_param%. Each instance
of a template parameter is replaced by its value when the configuration for a specific node is generated.

10.17.1 Definition of Template Parameter

There two ways to define new template parameter:

10.17. Template parameters 176

http://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

FRAFOS ABC SBC User Guide, Release 5.5.2

Define parameter directly in input field

Just enter its name enclosed by “%” characters into any input field allowing template parameters and click on the
‘Create’ link.

If a template parameter needs to be used in a drop-down or checkbox field in the GUI, just simply click on the
pencil icon next to the input field. It allows for entering free form text into the input field.

As of now the template parameters are supported in Rules, Global Config and in interfaces/node TLS profile
assignment.

Define parameters on the “Cluster config parameters” screen

The screen located at “Config->Define cluster config parameters” lists all the defined parameters. The screen allows
for creating new parameters as well.

10.17.2 Set specific values for Template Parameters

Once the parameters are defined, their value can be customized per node or config group on the “System -> Config
Groups” screen.

10.17. Template parameters 177

FRAFOS ABC SBC User Guide, Release 5.5.2

If the value for a defined parameter is not customized, its default value is used. Otherwise it is replaced by the
config group value or node value (node specific value takes precedence over config group value).

10.17. Template parameters 178

Chapter 11

ABC SBC System administration

This Section describes the administrative tool available on the ABC SBC. There is also the CLI reference, see
Sec-CLI-Reference.

11.1 User Management

There are two ways how to administer User Accounts and granular access control for the ABC SBC: using GUI
and using CLI. The primary method is via GUI, the CLI method is restricted in functionality. Both methods are
described in the following subsections.

In opposite of other SBC configuration the changes in user accounts take immediate effect. They do not require
activation of SBC configuration.

The access control concept is based on the notion of group membership. Groups define at a granular level per-
missions to perform specific actions, such as GUI access, viewing and/or modifying the ABC SBC topology,
monitoring various aspects of the ABC SBC, accessing RPC, firewall administration, etc.

A user gains all associated privileges by being assigned to a group. A user can be member of multiple groups.

The system comes with preconfigured user accounts as described in the Section Default User Accounts.

11.1.1 GUI User Management

Access to the administrative GUI can be managed using User Management (menu: “CCM → Users“) and Group
Management (menu: “CCM → Groups“).

User Management allows to add, delete and modify users – their passwords and group membership.

Group Management allows to enable/disable the respective permissions for a group. Once set and applied, it applies
to all group members.

179

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 1: Example: Group Management

11.1.2 CLI User Management

The CLI User management permits to create new users and assign them to a group. This subsection lists available
commands.

To add a new user, use the CLI the following way:

% sbc-add-user '--password=DoyoulikeH.323?' admin

The new user comes without any privileges and must be assigned to a group. To assign the new user to the admin-
istrative group with all permissions use the following command:

% sbc-add-user admin SBCadmins

To unlock locked account due to unsuccessful login attempts use this command:

% sbc-user-passwd -u admin

Additional commands include:

• sbc-del-user to delete a user

• sbc-list-groups to show existing user groups

• sbc-list-users to show existing users

• sbc-user-passwd to change a user’s password

11.1. User Management 180

FRAFOS ABC SBC User Guide, Release 5.5.2

11.1.3 GUI Two Factor Authentication

Starting with the 5.5 ABC SBC release, administrators can enable two-factor authentication (2FA) for enhanced
security. The ABC SBC supports one-time passcode (TOTP) authentication method for which an external authen-
ticator application (Microsoft Authenticator, Google Authenticator, etc.) is required.

To enable 2FA for a new user, navigate to the CCM –> Users and click on Insert new user button. In a newly
opened pop-up fill all necessary details and check the Enable two factor authentication with authenticator app
checkbox and click on save button.

To enable 2FA for an existing user, navigate to the CCM –> Users and click on edit icon for selected user. In a
newly opened pop-up check the Enable two factor authentication with authenticator app checkbox and save your
changes.

During next login a user still provides his username and password but once the Login button is clicked, a screen
for 2FA using one time passcode is opened. When a user logs in for the first time using 2FA, he needs to add this
account into his authenticator application. To do that, just scan the code with your authenticator app or type the
secret key into it. Once this is done, fill the 6 digit generated code and proceed with the login. After successful
login, user will be prompted just about the 6 digit code next time (once valid credentials were provided.

TOTP is also supported for LDAP users. If this functionality is required, ensure that the Cluster Config Manager is
correctly configured for LDAP. Once configured, the user must first log in with their credentials. After this initial
login, the user’s name will appear on the CCM → LDAP users 2FA screen. To enable TOTP, check the checkbox
next to the user’s name. TOTP will then be required for the user’s next login attempt.

11.1.4 Passwordless authentication

Starting with the 5.5 ABC SBC release, administrators can enable passwordless authentication for any configured
account. This allows administrator to login into Cluster Config Manager without existing credentials using passkeys
authentication.

To enabled passwordless authentication some mandatory configuration is required:

• A valid TLS certificate must be configured in CCM –> CCM Config –> Management access tab.

• To access CCM a hostname must be used in a browser. IP address is not allowed.

• If the CCM hostname is set properly then the Relying Party ID (CCM –> CCM config –> Login tab) can
be left untouched and hostname value is used instead. If a different ID is needed then it can be modified
accordingly. Important is the Cluster Config Manager TLS certificate must be valid for Relying Party ID that
means its value must appear in Subject Alternative Name section of a certificate.

Once all required configuration is ready, login with a targeted user and click on user name in the right top corner,
select Passwordless Authentication. On newly opened screen, click on Add a passkey button. If this is a first time
you use your token, you might be prompted to choose a security PIN. Otherwise you might be asked to provide
your security PIN. Once this is done you will finish a passkey creation by touching your token.

When login with such a user, click on Login with a passkey button. You will be prompted to provide a security
PIN for your token and then touching the token to finish the login process. After successful verification you will
be logged in into Cluster Config Manager.

The passkey authentication is also available for LDAP users.

Note: A user account with enabled passwordless authentication can use both methods to login into Cluster Config
Manager - either using standard login credentials or using passwordless authentication. Both methods coexist next
to each other.

11.1. User Management 181

FRAFOS ABC SBC User Guide, Release 5.5.2

11.2 Server Administration

If a maintenance of the server running ABC SBC is needed, it is possible to shutdown the container from the GUI.
The following buttons may be available on the Nodes screen, which can be accessed via the ‘System > Nodes’ link
under the hamburger menu icon.

Fig. 2: Example: Server administration

• Shutdown: performs soft shutdown of the container.

• Force HA offline: displayed only if node is running as HA pair, it puts forcibly the node into HA FAULT
mode. In this mode the HA resources (VIP addresses, routes) and signaling application are stopped on the
node, and should be moved to the other node which becomes new HA MASTER (under the condition that
the other node is up.) It can be used when upgrading ABC SBC, to make sure the node being upgraded is not
processing traffic. The same can be achieved also from command line using the “sbc-ha-offline” command
on the specific node.

• Un-force HA offline: displayed only if node is running as HA pair, reverts the forcibly set HA FAULT mode
that was set using “Force HA offline”, meaning it puts the node back to normal mode, in which a node can be
either HA BACKUP or MASTER depending on negotiation with the other node. The same can be achieved
also from command line using the “sbc-ha-online” command on the specific node.

• Console to node: open SSH connection to the server. The SSH connection is opened by xterminator user
from CCM to root user on SBC. So if you need to setup automatic login using SSH keys, just put SSH public
key of xterminator user on CCM to the SBC nodes. SSH is looking for the keys in /data/sbc/xterminator/.ssh
on CCM and in /data/root/.ssh on SBC. Note: This functionality requires SSH application to be enabled on
one of SBC interfaces. By default, the SSH is disabled.

Note: The direct SSH connection to the SBC node is available only for 5.4 nodes and older.

• Console to host: open an SSH connection to the host where the SBC container is running

• Enable maintenance mode: If the “maintenance mode” is activated, the SBC answers 503 to any request.
The maintenance mode can also be enabled from command line. See xmlrpc_maintenance_mode for more
details.

• Disable maintenance mode: Once “maintenance mode” is disabled, the SBC starts operate normally again.
The maintenance mode can also be disabled from command line. See xmlrpc_maintenance_mode for more
details.

Note: Current HA status can be checked either from “System status” screen or using “sbc-ha-status” command
line command on the specific node.

11.2. Server Administration 182

FRAFOS ABC SBC User Guide, Release 5.5.2

11.2.1 SSH to host

The SSH to Host feature allows you to access the host of the ABC SBC container via SSH connection from the
GUI. This feature is only available if the host information has been configured for the SBC node. Node hosts can
be configured on the ‘System > Node hosts’ screen. The node host must be assigned to the node on the ‘System >
Nodes’ screen. The node hosts can be configured using the following parameters:

• Name: The name used to reference the host in the GUI.

• IP or hostname: The IP or hostname of the host to which the ABC SBC container is running on.

• SSH Port: The port used to access the host. Default is 22.

• SSH Username: The username used to access the host.

The SSH connection is opened by the xterminator user from the CCM. If you need to set up automatic login, using
SSH keys, simply add the SSH public key of the xterminator user on the CCM to the node hosts. SSH looks for
keys in /data/sbc/xterminator/.ssh on CCM and usually in ~user/.ssh on the host.

11.3 Backup and Restore Operations

11.3.1 ABC SBC Configuration Management

The ABC SBC configuration is stored in a local MariaDB database on the configuration master node. When the
administrator applies the changes using the “Activate SBC configuration“ link, an automatic snapshot of the
configuration database is created and is labeled as „Automatic Snapshot“ in the list of available snapshots.

The SBC administrator can manually trigger the generation of the configuration DB snapshot from the GUI. When
the configuration snapshot is created, it is recommended to write a short comment to note what exactly has been
modified. Optionally also content of provisioned tables database can be included in the snapshot.

These configuration DB snapshots can be accessed using the “System → Config Management“ screen, see Fig.,
Managing the ABC SBC configuration backups. From the GUI, the administrator can create new snapshots or
change or add a comment to an already existing snapshot. To restore a saved configuration the administrator can
use the “Load config“ link of the desired configuration snapshot, or the “Load provtables“ link to load the content
of provisioned tables (if the snapshot contains it).

Warning: The content of provisioned tables is integral part of the configuration. It should be part of every
backup unless there is a good reason to skip it; for example size of the database with provisioned tables.

Warning: Neither configuration nor content of provisioned tables can be loaded from a snapshot created on
newer Cluster Config Manager release. For example, it is forbidden to load configuration or provisioned tables
on a 5.2.x Cluster Config Manager if the snapshot was created on 5.3.x.

This means that before upgrade to a new release it is really important to create a DB snapshot on the old Cluster
Config Manager to allow for smooth downgrade in case something goes wrong.

Snapshots may also be downloaded and uploaded from the same GUI page. The only supported format is .tar.gz.
Filename doesn’t matter is case of upload, but for usability the default file name in case of download is: sbc-backup-
<date>_<db version>_<sbc version>_<snapshot name>.tar.gz

11.3. Backup and Restore Operations 183

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 3: Managing the ABC SBC configuration backups

Note: When the configuration DB backup is loaded, the configuration is NOT automatically applied. The admin-
istrator should check if the restored configuration is the correct one and then has to manually apply it using the
“Activate SBC configuration” link.

11.3.2 ABC SBC Configuration Backup

Apart from the above configuration snapshots, it is also possible and recommended to use automatic daily ABC
SBC backups, which can be enabled under Config / Global Config / Backup tab. The following options can be set
there:

• Equivalent settings as for CCM - if enabled, the settings on this Backup tab will not be used on Sbc nodes,
but the same settings as configured for CCM node (under CCM / CCM Config / Backup page) will be applied
on Sbc nodes.

• Create daily Sbc configuration backups - this enables the daily backup.

• Include provisioned tables in daily backups - when enabled, also content of whole provisioned tables
database will be included in the daily backup. It is enabled by default and recommended.

• Number of days to keep backups - sets the retention period for the daily backups. On each backup run, all
backup files older than the specified number of days will be deleted. Use 0 to disable any automatic removal.

• Destination directory for backups - sets the directory, to which the daily backup files will be created.
Default setting is “/data/backups”. The partition holding this directory should have enough space for the
daily backups.

• Full path to extra files or dirs to include in backup, separated by comma - it is possible to include custom
files or dirs into the backup. The paths to files or directories has to be full path. Directories will be included
recursively. It is also possible to use wildcard “*”. The path must not contain comma character.

It is highly recommended to enable the daily backups and include the backups destination directory to customer
off-server backups to external device, or at least to copy the backup files to external device after important changes
done on ABC SBC configuration, to be able to recover SBC node in case of hardware failure. Note that to minimize
external backup impact on ABC SBC performance, a solution allowing to use only idle I/O and CPU should be
used.

The daily backup files are gzipped tarball archives and contain the following data, which can be used (directly
or as a reference) when recovering ABC SBC configuration: the main ABC SBC configuration database dump
(backups from master node), optionally also whole provisioned tables database dump, versions of important RPM

11.3. Backup and Restore Operations 184

FRAFOS ABC SBC User Guide, Release 5.5.2

packages installed, local configuration files templates (if existing), system network interfaces configuration files,
system hostname, system hosts file, MariaDB server configuration file, node UUID info, optionally also root user
SSH authorized keys files.

11.3.3 ABC SBC Recovery Procedure

In case ABC SBC server dies, it is possible to recover it using the following steps. In case more ABC SBC nodes
are used, this procedure differs depending on if recovering main configuration master CCM node or not.

Steps to be done when recovering configuration master CCM node:

• Locate latest ABC SBC backup file from the daily ABC SBC backups.

• If needed, prepare new server to host container(s), check system network interfaces, routes, hostname. Pay
attention e.g. to possibly changed system interface names.

• Install CCM container, following normal installation steps, see Sec. Sec-Install. Use the same major release
line (like 5.0.x) that was there before.

• Restore ABC SBC configuration from the backup, either using GUI or by calling the following command,
where the <backupfile> is the daily backup gzipped tarball file.

% sbc-restore --rest-all --bckfile <backupfile>

• Access ABC SBC administration GUI and check the restored configuration.

• Activate the configuration using “Activate Sbc configuration” link, which is available at bottom of Overview
GUI page.

• Check if the ABC SBC node(s) pulled new configuration using Monitoring / System status.

Steps to be done when recovering a node not being configuration master, where the configuration master node is
still working:

• If needed, prepare new server to host container(s), check system network interfaces, routes, hostname. Pay
attention e.g. to possibly changed system interface names.

• Install ABC SBC container, following normal installation steps, see Sec. Sec-Install. Use the same major
release line (like 5.0.x) that was there before.

• Perform only the “sbc-init-config” initial configuration steps, provide existing configuration master node
address. Important: when performing the initial configuration, it is highly recommended to provide the
node UUID that was used previously on the node being recovered. It can be found under “Details” of the
node on “System status” page or on “Nodes” page under “System” menu on ABC SBC config master GUI.
If the previous node UUID is not provided, the node can be still recovered, but in case there was some
configuration specific for that node (like system interfaces assigned to that particular node), it will have to
be fixed to apply to newly created node in GUI.

• Access ABC SBC administration GUI on configuration master CCM node and check configuration. In case
system interfaces names differ on the new server, update the logical to system interfaces mapping under
System / Interfaces.

• Activate the configuration using “Activate Sbc configuration” link on configuration master node, which is
available at bottom of Overview GUI page.

• Check if the recovered node pulled new configuration using Monitoring / System status on configuration
master node GUI.

11.3. Backup and Restore Operations 185

FRAFOS ABC SBC User Guide, Release 5.5.2

11.3.4 Manual Backup of the Complete SBC Configuration

It is also possible to manually backup the important files:

• SBC database: administrator can manually create a full SBC
configuration backup using ``sbc-backup`` command which creates a backup files into
``/data/sbc/configs`` directory, where also automatic DB backups are stored.

The following command line options can be used:

% --prov

Optionally also content of provisioned tables db can be included.

% --comment <comment>

A backup comment can be specified.

% --bckfile

If used, the backup files will be put also to gzipped tarball. Filename will be automatically generated from date,
version and comment.

% --bckdir <dir>

Specifies the directory where to save the backup file, if –bckfile option is used. Defaults to /data/backups.

% --filename <file>

If used together with –bckfile, save the backup under specified full file pathname instead of automatically generated
name.

% --remove

If the –bckfile option is used, by default the backup files are left also in the default directory (/data/sbc/configs/).
When this option is used, they will be deleted from that directory after creating the gzipped tarball file.

% --incl-ssh

If used, root user authorized keys will be included in the backup too.

% --incl-extra

If used, extra custom files or directories will be added to the backup. The extra files or dirs can be listed using
Global Config setting under Config / Global Config / Backup tab, using full paths, with separating more fields by
comma. It is possible to use wildcard “*”. There is a limitation that the path cannot contain comma character.

% --incl-system

Enables inclusion of system stuff - hostname, hosts and root user ssh authorized keys and password.

% --incl-all

Enables inclusion of all provisioned tables, system and ssh settings and keys at once.

% --excl-tls

Do not backup TLS profiles. This option can be used only when creating backup of config master node.

% --incl-dbsnaps

Include also configuration database snapshots. This can be used only on config master node.

11.3. Backup and Restore Operations 186

FRAFOS ABC SBC User Guide, Release 5.5.2

% --quiet

Print only warnings and errors, no info messages.

• CDRs: the customer’s billing system should regularly download CDRs generated by the SBC which are
stored on the SBC for 93 days by default. CDRs are stored to the “/data/cdr” directory.

• Logs: log files are stored in “/var/log/frafos“ directory

• Traffic logs: traffic logs created by the “Log received traffic“ action are stored in the “/data/traffic_log“
location.

• Recording files: recording files are stored in the “/data/recordings“ location.

11.3.5 Manual Restore of the Complete SBC Configuration

For manual backup restore, the command “sbc-restore” can be used. Be careful when using it, as it can overwrite
also various system files. The following options can be used:

% --bckdir <dir>

The backup from specified directory will be restored.

% --bckfile <filename>

The backup from specified backup gzipped tarball file will be restored.

% --prov

Restore also provisioned tables, if those are included in the backup.

% --provonly

Restore only provisioned tables, do not restore the main SBC configuration.

% --rest-ssh

Restore ssh root user authorized keys, if present in the backup.

% --rest-sysfiles

Restore system files /etc/hostname and /etc/hosts. Note that it just restores the files, does not change current host-
name.

% --rest-system

Restore all system files (ssh root user authorized keys and password, hostname, hosts). Use with caution.

% --rest-sbc

Restore all Sbc files (provisioned tables, config database snapshots etc).

% --rest-sbcpull

Restore Sbc config pull or push and related config files, including node UUID and local config templates. The Sbc
config pull configuration is the info that was initially entered using sbc-init-config command. If tls certificate or
CA certificate is used for the config pull or push, it is restored too.

% --rest-dbsnaps

11.3. Backup and Restore Operations 187

FRAFOS ABC SBC User Guide, Release 5.5.2

Restore config database snapshots, if included in the backup tarball. Can be used only on config master and only
when restoring from tarball.

% --rest-extra

Restore extra custom files or directories, if included in the backup. Note that while restoring the extra files, the
file permissions and ownership are preserved, but in case the directories for the files are missing and have to be
re-created while restoring, the directories permissions and ownership are not preserved.

% --rest-all

Restore everything included in backup (Sbc config, provisioned tables, ssh, system, sbc pull/push config).

% --excl-tls

Do not restore TLS profiles, if those are included in the backup.

% --quiet

Print only warnings and errors, do not print info messages.

% --rootfs <path>

This is low-level option allowing to run the sbc-restore command e.g. on container instance which is stopped and
the Sbc filesystem is mounted to some directory of the host system. The provided path should point to the directory
where the Sbc filesystem is mounted. The restore operations will just overwrite files but skip all steps that would
require running system.

11.4 How to setup a Semi-redundant CCM on ABC SBC

This section describes steps needed to setup a “semi-redundant” cluster config master (CCM) node for Frafos ABC
SBC.

With current ABC SBC release, there is no official support for redundant CCM node. But with help of this docu-
ment, a backup CCM node plus automatic transfer of configuration backup to it can be set up, which will be ready
to take over the role of cluster config master for SBC nodes in case of main CCM node failure.

Note: the official full support for geo-redundant CCM is planned for future ABC SBC release.

We refer here to the main active CCM node as “primary CCM” and to the backup node as “backup CCM”.

The procedure is based on standard ABC SBC backup / restore using configuration snapshots, as described in ABC
SBC handbook Sec. Backup and Restore Operations. Please refer to that for details.

Note that the switch to backup CCM still requires manual intervention.

11.4.1 Setup primary CCM node

Start and configure the primary CCM node the standard way.

After initial configuration is done, note the primary CCM node “node UUID” value, which can be found on GUI
“System” / “Nodes” screen, value from the row for the CCM node itself.

11.4. How to setup a Semi-redundant CCM on ABC SBC 188

FRAFOS ABC SBC User Guide, Release 5.5.2

11.4.2 Setup backup CCM node

Start clean fresh CCM container for the backup CCM (on some other physical host), using the same SBC release
and the same installation way as the primary CCM, but do not configure anything in GUI.

11.4.3 Configure configuration snapshot backups

On primary CCM GUI, navigate to “Config” / “Global config” screen, and there select the “Backup” tab.

Enable the “Create daily Sbc configuration backups” option.

Make sure that also “Include provisioned tables in daily backups” option is enabled.

The option “Destination directory for backups” sets directory, to which the daily configuration snapshots are saved.
Default directory is “/data/backups” local directory on the primary CCM node. It can be also possibly pointed to a
specific directory which is mounted externally to the primary CCM node, e.g. from external network share device
or via NFS.

Activate new configuration from CCM GUI.

Optional step: in case the backup done daily would be too low frequency, it is possible to change that according to
customer need, e.g. to be done every hour. The command which performs the daily backup is “sbc-daily-backup”
and by default it gets started from “/etc/cron.daily/sbc-backup”. This can be customized by administrator e.g. by
moving the file to cron daily directory, to make it run every hour:

% mv /etc/cron.daily/sbc-backup /etc/cron.hourly/

But please consider the fact that the configuration snapshots contain also all provisioned tables data, so they can be
big. Also the change like this, to set more frequent backups, won’t survive possible CCM container replacement
with newer one.

11.4.4 Setup configuration backups transfer to backup CCM node

The configuration snapshot backup files need to be transferred from the primary CCM node to some other safe
location, to ensure they do not get lost in case of primary CCM node failure, or can be transferred directly to the
backup CCM node.

The recommended way is to manage the files transfer from other external customer server, not from the primary
CCM node itself, to avoid loosing that functionality when e.g CCM container is replaced with newer one.

Depending on customer deployment, possible ways to achieve this are like:

• If the daily backups on primary CCM node are created to some externally mounted directory, customer can
setup some regular way of copying those files to the backup CCM node “/data/backups” directory, e.g. using
“scp” secure shell copy, or “rsync” program. In this case please also pay attention to available space on target
location on backup CCM and possibly delete old files (rsync option “--delete” can be used for that).

• Another option is that the latest configuration backup can be copied from external location to the backup
CCM only when primary CCM failure happens.

• If the configuration snapshot backups are created only to “/data/backups” local directory on primary CCM, it
is possible to setup e.g. “rsync” command to be run periodically, which will transfer whole “/data/backups”
directory content in a efficient way from primary CCM node to backup CCM node directly, using SSH as
underlying protocol. The transfer can be set up to be initiated either from primary CCM side or from backup
CCM side. We recommend to initiate it from backup CCM side.

Example of rsync command to synchronize the configuration backups (assumes ssh on port 24 on primary CCM
node, 192.168.0.1 is the IP address of the primary CCM), to be run on backup CCM node:

% rsync --delete -r -e 'ssh -p 24' root@192.168.0.1:/data/backups /data/

11.4. How to setup a Semi-redundant CCM on ABC SBC 189

FRAFOS ABC SBC User Guide, Release 5.5.2

This command can be run periodically e.g. using system “cron” service, by creating a file like “/etc/cron.d/rsync”
with the following content on the backup CCM node, to make it run every hour (at 10 minutes past every hour):

10 * * * * root rsync --delete -r -e 'ssh -p 24' root@192.168.0.1:/data/backups /data/

Note: if ssh is being used as underlying protocol for rsync, it is possible to make it work from backup CCM
to primary CCM without passphrase using the following commands on the backup CCM (192.168.0.1 is the IP
address of primary CCM):

% ssh-keygen
% ssh-copy-id -p 24 root@192.168.0.1

After the setup of configuration backups transfer is done, make sure that the backup files are really being transferred
automatically to “/data/backups” directory on the backup CCM node.

Check also the backup size and available space, and tune global config setting “Number of days to keep backups”
on primary CCM GUI (Backups tab). Note that if using the rsync command (with the “--delete” option), the
files deleted on primary CCM node directory will be also deleted automatically by rsync from the backup CCM
node directory.

11.4.5 Steps to make the backup CCM available in case of primary CCM node
failure

In case of primary CCM node failure perform the following steps:

• Find the latest configuration backup file that was transferred to backup CCM directory “/data/backups”, or
if using external backup location copy it to backup CCM “/data/backups” directory.

• Restore the backup using command like this on the backup CCM:

% sbc-restore --prov --rest-ver --bckfile
/data/backups/sbc-backup-2020-10-22_11-36-50_42001027_4.2.22-77_daily_backup.tar.gz

Note: if system stuff like ssh keys or hostname was included in the backup too, and restore of that is needed, add
also the following option:

--rest-system

• Access the backup CCM GUI and review the loaded configuration.

• Activate the new configuration from backup CCM GUI, to make it available for SBC nodes.

11.4.6 Steps to be done on SBC nodes to start using new CCM

Once the backup CCM is available and configuration snapshot backup was loaded on it, and if the backup CCM
uses different IP address from the previous main CCM, re-configure all SBC nodes to use new CCM address using
the following command on each of them:

% sbc-init-config

Alternatively, a DNS hostname can be used as CCM node address on all SBC nodes. In that case it is recommended
to use a DNS record with short TTL value, which allows then easy central change of the CCM address just by
updating the DNS record, without need to update it on all SBC nodes. (Note: but avoid using more A records
under one DNS name, pointing to more IP addresses).

11.4. How to setup a Semi-redundant CCM on ABC SBC 190

FRAFOS ABC SBC User Guide, Release 5.5.2

11.4.7 Additional steps and checks

Access the backup CCM GUI “Monitoring” / “System status” screen. Check if all SBC nodes have pulled new
configuration from the new CCM.

There may be a duplicate “System status” record shown for the CCM node itself (coming from the node UUID
update done initially), but this older CCM node status (which can be identified by the “Last report” column) can
be safely ignored, or deleted if using newer CCM which allows that.

Note: in specific case, when the configuration snapshot that was restored on backup CCM was not the latest one,
and if the “sbc-init-config” step was not done on Sbc nodes, the nodes will not pull the configuration from the
backup CCM after switch to it automatically, because the “configuration version” number used to detect new
configuration will be lower on the backup CCM than what the nodes already expect. This should not happen if
following this procedure correctly and latest configuration snapshot was restored on the backup CCM. But in case it
happens, which can be seen on backup CCM GUI screen “Monitoring” / “System status” by the nodes configuration
versions higher than the “Latest config version”, it is possible to manually forcibly increase the configuration version
of configurations exported from CCM using “sbc-set-confversion <version>” command.

11.5 Upgrade Procedure

FRAFOS regularly releases a new version of ABC SBC. New features, modifications and bug fixes are described
in a “Release notes” section of SBC handbook for every new release.

If ABC SBC is deployed in the non-HA mode then it is expected a service disruption during the upgrade process.
For that reason it is strongly recommended to perform upgrade in the service maintenance window.

If HA is used, before the upgrade is started, both cluster nodes have to be online and all required services run-
ning. The administrator should also create a configuration snapshot, see Sec. Backup and Restore Operations.

Please upgrade the CCM node first, and continue with SBC node(s) upgrade only after new CCM is verified to be
correctly functional.

The following upgrade procedure applies to ABC SBC container installation.

11.5.1 Container ABC SBC upgrade

When the ABC SBC is deployed as a container, there is no “online upgrade” of the existing (and running) container,
but the whole container is replaced by newer version.

It is highly recommended to use separate directory “mounted” to the container for “/data” path, as described in the
container install section, which keeps data that is expected to be persistent and makes the container replacement
easier. If it is not used, it is possible to manually copy or move the /data content of old container after stopping it
to new container before starting it for the first time. If doing so, please pay attention to keeping files permissions
and ownership.

When replacing container, please follow these steps:

• Create a ABC SBC backup. Note: the backup file is needed when replacing CCM node container, but might
be needed also in case of troubleshooting possible issues, so create it on both CCM and SBC nodes. Use
command like this on container:

% sbc-backup --incl-all --bckfile

It will create backup under “/data/backups/” directory by default. Note the created backup tarball filename.

• Stop the container.

• Backup directory with the old container, by renaming the directory like:

% cd /var/lib/machines
% mv <name> <name_backup>`

11.5. Upgrade Procedure 191

FRAFOS ABC SBC User Guide, Release 5.5.2

• Create new directory (using the same name as before) and unpack the new container image to it, similar way
like listed also in the install section - example:

% mkdir /var/lib/machines/<name>
% tar --xattrs -p --numeric-owner -C /var/lib/machines/<name> \
% -xzf frafos-abc-sbc-4-6-1-481.tgz

• If the externally mounted “/data” persistent directory is not used, as mentioned above, copy or move content
of old container “/data” sub-directory to new container “/data” sub-directory, example:

% cp -a /var/lib/machines/<name_backup>/data/* /var/lib/machines/<name>/data/

• Start the new container.

Note: Using the same name for the directory means that SBC hostname visible in the GUI will not change. Of
course it is also possible to keep the original container’s directory name and unpack the new container into a new
folder. In that case the SBC hostname which is used in SBC GUI will change.

If the container is CCM node:

• Access the CCM GUI, review the configuration and activate it.

If the container is SBC node:

• If persistent /data directory is not used, call the following command to perform the initial config:

% sbc-init-config

• The SBC should automatically pull configuration from the CCM node.

Access the CCM node GUI and check Monitoring / System status page, check for any errors reported by SBC
nodes.

11.6 Migration from 4.5/4.6 to 5.0

The migration from 4.x ABC SBC product line requires some additional work. First of all it is necessary to prepare
one or more host servers which will be serving ABC SBC containers. As a minimum installation CCM and SBC
containers need to be deployed. It is possible to use a single server to host both containers or to use separate servers.

In case of HA deployment, two servers are required as it would not make sense to host backup ABC SBC node on
the same host as a master.

Frafos recommends to use Debian 12 stable as OS for host server however it should be possible to use any other
recent Linux OS.

It is also possible to re-use the existing CentOS 7 server as a host server however we don’t recommend this as
CentOS 7 is end of life and is no longer supported.

The following upgrade procedure applies to ABC SBC installation.

11.6.1 ABC SBC migration procedure

The migration is very similar to upgrade procedure described in Container ABC SBC upgrade. Please refer to
upgrade section for more details.

First of all, it is necessary to do the backup of existing servers. The backup of CCM is mandatory, backup of SBC
is an optional but recommended:

% sbc-backup --incl-all --bckfile

11.6. Migration from 4.5/4.6 to 5.0 192

FRAFOS ABC SBC User Guide, Release 5.5.2

Copy all backup files to secure location, to have them ready, if needed.

Now deploy a new CCM and SBC container(s) as described in XXX. Once ready start all of them. Navigate to the
CCM GUI and on the initial login screen use the upload option to upload a backup file which was generated on 4.x
CCM.

Fig. 4: Initial GUI login screen

Once the configuration is restored, you should see the following message in the pop-up window:

% Sbc configuration restore finished.

Fig. 5: Successful configuration restore

Close the pop-up windows and navigate to the login screen. Use you login credentials from your 4.x installation.
Once logged into the GUI, there is a warning about pending configuration changes which need to be activated.
At this point there is no active configuration which could be downloaded by SBC nodes. Before configuration
activation please double check all your configuration and do necessary changes if they are required. Please pay
attention to system interfaces and applications configured on interfaces. Problematic parts can be:

• different system interfaces names as you used on your 4.x setup,

11.6. Migration from 4.5/4.6 to 5.0 193

FRAFOS ABC SBC User Guide, Release 5.5.2

• SSH configuration,

• all hard coded IP addresses which might now be different (for interfaces, interface applications, routing rules
or A/C rules),

• all 4.x CCM related interfaces can be removed as they are no longer needed in 5.0,

• there is no XMI interface in 5.0.

If your configuration is OK, then activate it. Once configuration was activated, it is necessary to run sbc-init-config
on every ABC SBC node. This must be done from container console. In order to do that, SSH to the host server,
there login into the ABC SBC container:

% machinectl shell <container_name>

Now navigate to the System –> Nodes, click on info button for SBC node which you plan to configure. Check
that the CCM IP address is correct one and if so click on “Copy initial config to clipboard” button and paste this
command into the container console. Execute the command. Now the SBC node should fetch the configuration
from the CCM and activate it automatically.

Fig. 6: Node info pop-up

The GUI part can be skipped and you can execute the “sbc-init-config” directly but then please provide correct
node UUID once the script asks about it.

Repeat this for every SBC node which you would like to restore.

11.6. Migration from 4.5/4.6 to 5.0 194

FRAFOS ABC SBC User Guide, Release 5.5.2

Expected things which might be surprising

In the 5.0 there is no default root password set for containers. Also SSH is disabled by default. This can cause
some unexpected surprises as during migration from 4.x to 5.0 we do not migrate any system accounts.

If you were using SSH, you will not be able to use it after migration until you create all necessary accounts again
or you upload the SSH authorized_keys file manually into the container. Please note if you create some new
system user accounts inside the container then those accounts will be lost during next container replacement while
upgrading to a newer version.

During the migration only configuration related information is transferred. However there might be need to migrate
also other files like CDRs, audio recordings, traffic logs, prompts. If this is the case, please, transfer all necessary
files from 4.x server to 5.0 manually. There is no script which would do this automatically. All above mention
data are stored in /data partition in corresponding directories. Please note, starting 5.0 CDRs were moved to /data
partition as well.

Table 1: Data directories mapping
Data type 4.x location 5.0 location
CDR /var/log/frafos/cdr /data/cdr
recordings /data/recordings /data/recordings
traffic logs /data/traffic_log /data/traffic_log
prompts /data/prompts /data/prompts
pcaps /data/pcap /data/pcap

Expected things which might be surprising

In the 5.0 there is no default root password set for containers. Also SSH is disabled by default. This can cause
some unexpected surprises as during migration from 4.x to 5.0 we do not migrate any system accounts.

If you were using SSH, you will not be able to use it after migration until you create all necessary accounts again
or you upload the SSH authorized_keys file manually into the container. Please note if you create some new
system user accounts inside the container then those accounts will be lost during next container replacement while
upgrading to a newer version.

11.7 SBC Dimensioning and Performance Tuning

This section provides background information on typical traffic patterns, its performance implications, and perfor-
mance tuning possibilities. This information can help to make a more educated estimate than provided in Section
Capacity planning. However, confidence can only be achieved by measurement of the target ABC SBC configura-
tion against actual traffic on the used hardware.

The reference hardware we used is Sun SunFire X4170 with the following configuration:

• 2 x Intel Xeon X5570 @ 2.93GHz CPUs, each 4 cores with hyper-threading enabled

• 2 x on-board Intel Gigabit Ethernet adapter

• 8 GB RAM

As an alternative, we measured on a Dell R410 with the following configuration:

• 2 x 4-core Intel X5550 CPU 2.6GHz

• 2 x Broadcom NetXtreme II BCM5716, 8 IRQs/queues

• 12 GB RAM

The alternative results are shown in parenthesis.

On the reference hardware, the maximum performance limits of the ABC SBC have been measured as follows:

• 5000 parallel G.711 calls with media anchoring (3600)

11.7. SBC Dimensioning and Performance Tuning 195

FRAFOS ABC SBC User Guide, Release 5.5.2

• down by factor of five when transcoding is used,

• call rate of 480 calls per second, without media anchoring

• registration rate of 9900 registrations per second.

Actual use-cases may have significantly different traffic characteristics and therefore the resulting performance may
be driven by different limits. In this section we look at the most typical cases: a trunking case with and without
transcoding and a residential deployment scenario. All the use-cases assume a single-pass SBC traversal for both
SIP and RTP. In the next section, we also summarize the critical configuration aspects that need to be checked
when tuning the system for the highest performance.

11.7.1 Trunking Use Case

This case is characterized by handling many calls, both signaling and media, from rather few sources. SIP traffic is
not NATed and does not include REGISTER transactions. In this case, the most demanded functionality is media
forwarding and the most significant bottleneck is the packet rate of the Ethernet card. Small packets as common
with VoIP saturate Ethernet card nominal capacity much earlier than large HTTP packets would. A reasonable
Ethernet card shall deliver at least 400 thousand packets per second in each TX and RX direction.

With such a packet rate, the following number of parallel calls can be achieved for the respective number of calls:

codec/packetisation number of calls
G.711/20ms 5,000 (3,600)
G.729 6,000 (4,680)

11.7.2 Trunking with Transcoding

Transcoding is typically deployed as an additional feature in the trunking case. However, as transcoding is compu-
tationally expensive the bottleneck shifts to CPU. The following numbers are achievable on the reference platform:

transcoding number of calls
G.711-to-G.729 1,000 (750)

11.7.3 Traffic Estimates for Residential VoIP

With residential VoIP, the deployment sees many challenges: the clients are connecting from unmanaged networks
over NATs and variety of SIP client types causes interoperability issues. Addressing NAT traversal by enforcing
media anchoring (see Section Media Anchoring (RTP Relay)) and frequent re-registration (Section Registration
Handling Configuration Options) causes substantial increase in overhead. The ABC SBC keeps the heavy SIP
traffic off the infrastructure behind it, however the bandwidth impact on the incoming side must be considered.

Without frequent re-registrations NAT address bindings would expire and SIP devices behind NATs would loose
incoming traffic. While other more light-weight methods (STUN, CRLF) exist, re-registrations are safe in that
they work with every SIP client and create traffic keeping any NAT bindings alive. The penalty is quite high
resource consumption. The “background SIP traffic” is even higher in public SIP services than one could infer
from baseline calculation based on re-registration period. Alone use of digest authentication doubles number of
REGISTER transactions, many clients send additional traffic to check voicemail status (SUBSCRIBE), announce
their online status (PUBLISH), and get over NATs on their own (OPTIONS). As a result, the number of SIP request
roughly quadruples against base-line.

The following table summarized empirical impact of driving re-registration traffic to 180 seconds period for pop-
ulation of 1000 subscribers:

11.7. SBC Dimensioning and Performance Tuning 196

FRAFOS ABC SBC User Guide, Release 5.5.2

Rate per second (incoming interface)
REGISTER requests (w and w/o digest) 20 pps
all requests 40 pps
all requests and answers 80 pps
bandwidth (TX and RX about 1:1) 380 kbps

This load is noticeable both in terms of bandwidth and CPU impact.

The following table present impact of media-relay on bandwidth for 1000 subscribers in peak periods. The under-
lying assumption is that in peak periods, there is one call for every ten active subscribers.

number of subscribers 1000
parallel calls (10:1) 100
G.711 bandwidth (RX and TX) 197*2*100= 39,400 kbps
SIP bandwidth (RX and TX) 380 kbps
Total bandwidth ~40 Mbps

11.7.4 Performance Tuning

The performance of the system can be increased by proper configuration of the hardware, operating system and
the SBC. The following paragraphs list configuration suggestions that are known to bring the greatest performance
benefits.

Hardware has expectedly profound impact on system performance. With networking applications, is network cards
that shall receive particular attention. Our experience has been that Intel Ethernet cards are at least on part with
cards of other vendors and often overperform them. Note that it is necessary that the kernel is using specific card
drivers: performance of generic Ethernet drivers is noticeably lower. Hints to hardware specific configuration
option are provided in Sec. Hardware Specific Configurations.

Key card driver parameters that don’t come preconfigured with the ABC SBC are those specific to Ethernet inter-
faces. If available, tune the following parameters:

• enable Receive Packet Steering

• increase coalesce and ring buffer size

• bond statically NIC RX queues to CPU cores

Furthermore, you shall also make sure that your ABC SBC configuration is not causing unnecessary load. Con-
figuration options that can considerably increase overhead are especially media relay and registration processing.
Media relay shall be avoided if not needed. If an SBC connects networks that are mutually routable, anchoring
media may be entirely unnecessary. Also in many cases, when signaling passes the SBC twice on the way in and
out, you may need to pay attention to configure the media to pass the SBC only once. Registration processing is
primarily driven by the NAT keep-alive interval. We recommend a period of 180 seconds. Shorter intervals will
not dramatically improve NAT traversal and will cost performance degradation. Longer intervals could result in
expired NAT bindings for NATs that expire too rapidly.

11.8 Removing SBC Node

Before SBC node is removed from the system, please make sure it is stopped. Then you could remove it from the
system in GUI: “System → Nodes“ screen.

Removing node in GUI just remove it from the list of nodes for which CCM generate configuration. This does not
perform any action on the node itself (like stopping it).

If alive node is removed from the system, it might re-appear again if node auto adding is enabled (see ccmmiscpa-
rameters).

11.8. Removing SBC Node 197

FRAFOS ABC SBC User Guide, Release 5.5.2

11.9 High Availability administration

This section describes various High Availability advanced topics.

11.9.1 High Availability statuses

Each node in the high availability (HA) setup can have one of the following statuses:

• Unknown: The current status of the node could not be determined, or its role (MASTER or BACKUP) has
not yet been verified.

• BACKUP: The node is in standby mode, ready to take over if the master fails.

• MASTER: The node is actively serving as the master in the HA setup.

• FAULT: keepalived has detected error on this node, like if any SIG/Media interface is down or the SBC has
been manually taken offline (sbc-ha-offline or via the CCM GUI), or configuration error detected

• STOP: keepalived is in the process of shutting down.

11.9.2 High Availablility switchover

A VRRP failover, i.e., an SBC node in BACKUP state becomes MASTER, always occurs if there is no other node
(not in FAULT state) with the same/higher priority.

The priority is influenced by:

• whether the node was previously MASTER (weight 1; to prevent sporadic failover with the same priority)

• whether the sems process (SBC process) is running (weight -2 in case of an error)

• if configured: hardware monitoring (temperature, PSU status; configurable weight)

• if configured: the gateway heartbeating (configurable weight)

11.9.3 External track point for lowering HA priority

Note: this applies to ABC SBC release 5.5 and higher.

It is possible to lower a Sbc node HA priority from external host side. It is intended for use cases like monitoring
host hardware health and triggering HA switchover proactively when some serious hardware problem is detected.

The container has a “track file” prepared, using the following path inside: /data/sbc/ha/ha_track

From host side, it is possible to write a numerical value as text to this file. On each file modification, the Sbc HA
priority is lowered by the provided value. Under normal circumstances, writing value “1” loweres the HA priority,
but does not cause HA switchover yet, while writing value “2” causes HA switchover (if that Sbc node isn’t already
HA backup). Writing “0” returns the HA priority to normal.

When non-zero value is written to the track file, the Sbc node status is set to warning on CCM “Nodes status”
screen too.

It is also possible to write optionally a text reason (comment) to a file “/data/sbc/ha/ha_track_reason”, which is
then shown in the Nodes status details, if the status is set to warning.

To access the track file(s) from host: if /data is provided to container via separate host directory, the file can be
simply written directly under the corresponding host path. If the /data is provided using a volume, the dir with
track file(s) can be passed to the container create command using “–mount” podman (or similar for e.g. docker)
option - example:

% --mount type=bind,source=/some_path_on_host/ha,destination=/data/sbc/ha

11.9. High Availability administration 198

Chapter 12

Monitoring and Troubleshooting

12.1 Overview of Monitoring and Troubleshooting Techniques

The ABC SBC and its accompanying monitoring product, ABC Monitor, are designed to provide real-time insight
into service health and user behavior for sake of troubleshooting, trending and security. Routine monitoring and
troubleshooting is a key part of a SIP service life-cycle. It is also a complex one: the amount of traffic an SBC
must handle is enormous and finding abnormal patterns in such quantity is not entirely easy. This is especially true
when the service is exposed to a larger user population and is running on the public Internet. Also varying degree
of SIP compliance of attached devices often causes unexpected behavior.

Any abnormal service patterns can have a variety of reasons including unusual traffic caused by a security attacks
or broken devices, or administrative shortcomings such as a incorrect rule-base or an under dimensioned system.
Even if an abnormal situation does not impact a SIP service as whole but only a particular user it is important to
find out what is happening.

Identifying presence and root causes of abnormal situations therefore requires solid data about the operation of the
service. Here a virtue of the ABC SBC comes in play: it produces a lot of data reporting on the status of operation.
In fact the number of bytes produced for monitoring typically exceeds the number of bytes used for the actual SIP
signaling. What may seem disproportional is the recipe for the capability to understand and keep the status of
operation smooth at any time. Good operational decisions can only be made with reliable intelligence.

In the following chapters we will discuss various methods how to monitor an ABC SBC-powered SIP service
operation.

The most detailed and therefore powerful method to monitor the operation is using the events produced by the
ABC SBC (if the event license is installed). The ABC SBC “documents” what SIP users are doing by issuing a
report called event on every important user activity: registering, unregistering, failing to authenticate, completing
a call, and so on and so forth. An administrator can even produce his own custom events. The events provide a
history of user activity which can be looked backed at and analyzed. In a way, it tries to act as secret police would:
it holds “files” on the observed subject that include an exhaustive gap-free activity history. At the same time, the
overall collection of events also provides aggregated insights into the overall service health and can be used for
example to see how the service usage varies in course of a day.

The events do indeed come in a quantity that may make nailing down a problem or identifying a trend a tedious
task. Therefore the ABC Monitor is available from FRAFOS to aggregate and filter the events. In addition to user
events, the ABC Monitor also shows the utilization of the system. If a situation requires, the ABC Monitor collects
even traffic bits: SIP or even RTP data passing the ABC SBC. For more information about ABC Monitor, please
refer to ABC Monitor documentation.

The next chapter, Measurements and Monitoring shows how to monitor the overall system health using SNMP.
SNMP is the industry standard for monitoring system health and is supported by many third-party monitoring
tools, both commercial and open-source. The FRAFOS ABC SBC reports various OS-related and SIP-related
counters using SNMP and can also report custom-based ones.

Additional diagnostic information is available directly in the SBC GUI. There is real-time GUI view of established

199

FRAFOS ABC SBC User Guide, Release 5.5.2

calls and cached registration entries described in Section Live ABC SBC Information. There is also a possibility to
review most recent traffic at IP layer as described in Section User Recent Traffic.

Additional methods for determining service status data are eventually described in the Section Additional Sources
of Diagnostics Information.

12.2 Live ABC SBC Information

The Frafos ABC SBC allows to inspect its internal state in the administrative GUI.

12.2.1 Registration Cache

Registration Cache plays a significant role in off-loading registers, see Section Registration Caching and Handling
for more details. The actual Content of the ABC SBC registration cache can be inspected using the web interface
under the “Monitoring → Registration cache” link, see Fig. Registration cache.

Fig. 1: Registration cache

The following information is displayed for each entry:

• AoR - Address of Record. SIP URI address that is associated with none, one or more user Contacts by the
SIP registration procedure.

• Contact-URI - Contact registered by the user agent and associated with an AoR.

• Expires Value (registrar-side) - registration expiration at registrar side. This is the time when both the down-
stream registrar and the ABC SBC will let the contact expire.

• Expires Value (UA-side) - registration expiration at client (UA). This is the time when the ABC SBC expects
the client to re-register. Failures to re-register timely are ignored to keep the client reachable even if it its
re-registration procedure doesn’t work accurately. Because of REGISTER throttling feature (see Section
Registrar off-load) the actual value may be different (earlier) from Expires Value at registrar-side.

• Source IP - IP address where the REGISTER was received from

• Source Port - port where the REGISTER was received from

• User Agent - user agent identity (content of User-Agent header in REGISTER message)

12.2. Live ABC SBC Information 200

FRAFOS ABC SBC User Guide, Release 5.5.2

12.2.2 Live Calls

“Monitoring → Live calls” shows list of active calls, i.e. calls that have been forwarded and established. The calls
appear there from the time when a 200 SIP response is received from a downstream SIP element, till the call is
terminated. Calls that are in so-called “early media” or “ringing” status do not show, neither are locally processed
calls shown (e.g. calls processed using Onboard Conferencing).

Since the ABC SBC acts as a SIP B2B user agent, two call legs are shown for each established call:

• A leg (originating leg) - SIP dialog established with caller

• B leg (terminating leg) - SIP dialog established with callee.

Information displayed for each call leg include:

• Source IP - IP address where the REGISTER was received from

• Source Port - port where the REGISTER was received from

• Call-id - SIP dialog identifier

• Remote party - URI of remote party (equals the From URI for A leg and the To URI in case of B leg)

• Remote target -Contact of remote party

• Local party - Local URI.

• Dialog state - Current state of the SIP dialog

• Call start time - Time of call setup

The administrator can manually terminate the call using the “kill“ link and inspect call status details using the
“Call Status Information” link.

Fig. 2: Live Calls

12.2.3 Destination Blacklists

“Monitoring → Destination Blacklists” shows IP addresses that have been found to be unresponsive. See section
IP Blacklisting: Adaptive Availability Management to find out how to configure the ABC SBC to handle routing
to unresponsive SIP destinations.

The Figure Destination Blacklists shows the user-interface for monitoring the unavailable IP addresses. It shows a
single IP address and time-to-live to remain on the availability blacklist.

The TTL field specifies the time interval (in seconds) for which the destination is placed on the blacklist. When this
interval passes, the destination is automatically removed from the blacklist. If ‘-1’ value is used for TTL or if “Valid
forever” checkbox is checked, the destination is placed on the blacklist forever or until it is removed manually.

12.2. Live ABC SBC Information 201

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 3: Destination Blacklists

12.2.4 Registration Agents

“Monitoring → Registration Agents” allows monitoring of connections to third-party services where the SBC
has registered. The Figure Registration Agents displays the successful registration status. If needed, the admin-
istrator can manually trigger re-registration either for all registration agents using the “Re-Register All” button or
individually using the “Re-Register” button for a specific registration agent.

Fig. 4: Registration Agents

12.2. Live ABC SBC Information 202

FRAFOS ABC SBC User Guide, Release 5.5.2

12.2.5 Call Agents status

“Monitoring → Call Agents status” allows to monitor availability and blacklisting status of call agents.

Fig. 5: Call Agents status

The Destination monitor state shows call agent reachability if destination monitoring is enabled for the appropriate
call agent. It can have one of the following values:

• Not Monitored - Destination monitoring is disabled.

• Reachable - All IP addresses associated with a given call agent are reachable.

• Partially reachable - Some IP addresses associated with a given call agent are reachable, while others are
not.

• Unreachable - All IP addresses associated with a given call agent are unreachable (request was sent by SEMS
but no response arrived in time).

• Sent - No destination is reachable yet, and the system is still processing the status of at least one destination.

• Overloaded - No destinations are reachable. The last destination’s error occurred because the OPTIONS
probe received a reply code listed in the “Unavailable on reply code” configuration (503 if the configuration
is empty).

• Resolved - For call agents identified by “Domain or Hostname” with destination monitoring disabled, this
status indicates that the last destination was successfully resolved via DNS.

• Dns Error - For call agents that are identified by “Domain or hostname”, no destinations are reachable and
failed to dns-resolve the last destination.

• Unknown - The initial state before any information about the given call agent is available.

• Error - This state appears when SEMS is unable to send a request due to network level error(s) or signaling
interface problem.

The Destination blacklist state shows call agent’s destination blacklist status, if enabled for the appropriate call
agent. It can have one of the following values:

• Destination blacklist disabled - The destination blacklist is disabled for a given call agent.

• No destination blacklisted - No IP addresses associated with a given call agent are blacklisted.

• Some destinations blacklisted - Some IP addresses associated with a given call agent are blacklisted.

• All destinations blacklisted - All IP addresses associated with a given call agent are blacklisted.

Hovering over the current status with the mouse pointer displays a tooltip with additional information, which IP
addresses are reachable or unreachable.

Note: If a call agent is defined by IP range, neither destination monitoring nor destination blacklisting can be
configured.

12.2. Live ABC SBC Information 203

FRAFOS ABC SBC User Guide, Release 5.5.2

12.2.6 Conference Rooms

“Monitoring → Conference Rooms” displays a list of existing conference rooms, identified by their room ID,
along with a list of active participants for each conference room.

Fig. 6: Conference Rooms

12.2.7 System status

“Monitoring → System status” is divided into two sections. The first section, related to the CCM, provides a list
of all active warnings and errors related to the CCM itself. The second section focuses on all SBC nodes associated
with the CCM. For each node, key information is displayed regarding its configuration status and high availability
(HA) status.

CCM related information:

• Time - The timestamp when the problem occurred.

• Severity - The severity level of the problem:

– WARN - A minor issue has occurred with no immediate impact on functionality or operation. However,
administrator should assess the potential risk and resolve the issue if necessary.

– ERR - A major or critical issue has occurred, which might have significant impact on CCM function-
ality.

• Message - A description providing more details about the warning or error.

• Component - The service or component affected by the issue.

• Details - Clicking this button opens a window with detailed information about the problem.

Additionally, a “CCM Mgmt console” button is available. Clicking it opens a terminal window, allowing the
administrator to directly access the CCM node if needed.

Node related information:

• Node name - By default the hostname of SBC node is used, but this value can be modified.

• Hostname - The hostname of the SBC node.

• Release - The SBC version currently running on a node.

• Configuration - If the node is using the latest configuration, the value is set to “Up to date”. Otherwise, it is
marked as “Outdated”. Hovering over this value displays a tooltip with information on which configuration
version is being used by the node.

Note: A node may show “Up to date” but still be using a different configuration version than the one
indicated by the “Latest config version” label, which is located below the nodes table. This can happen
when the latest changes have not affected that node.

12.2. Live ABC SBC Information 204

FRAFOS ABC SBC User Guide, Release 5.5.2

• Status: The current status of the node:

– OK - No issues detected.

– WARN - A minor issue has occurred with no immediate impact on functionality or operation. However,
administrator should assess the potential risk and resolve the issue if necessary.

– ERR - A major or critical issue has occurred, which might have significant impact on SBC functionality.

• Config pull/push - Indicates whether a config PULL or config PUSH mode is configured for the node.

• Last report - The last time the node reported its status to CCM.

• Last pull - The last time the node pulled a new configuration.

• Signaling up since - The timestamp when the signaling interface became available.

• Master address - The IP address or hostname of the CCM by which the SBC node is managed.

• HA state - If the node is a part of high availability (HA) group, this field can display High Availability
statuses. If HA is not configured, this field remains empty.

• Prov tables - Clicking the ‘versions’ button opens a window displaying a list of all provisioned tables on the
node, along with their versions.

• Interfaces - Clicking the ‘show’ button opens a window listing all interfaces configured for the node.

• Details - Clicking the ‘details’ button opens a window with detailed status information about the selected
node.

• Mgmt console - Clicking the ‘Mgmt console’ button opens a terminal with an SSH connection to the host
where the node is running.

Fig. 7: System status

12.2.8 User Recent Traffic

The ABC SBC can be configured to keep track of the most recent SIP traffic. This is particularly useful when a
problem is identified which doesn’t occur anymore and needs to be troubleshooted retro-actively. Another reason
to look-back in this stored traffic is it includes even IP packets that are filtered at IP layer (see Section Police:
Devising Security Rules in the ABC SBC) and cannot be troubleshooted at higher layers.

By default, this feature is turned off, but can be turned on by changing the number of PCAP files to keep on “Config
→ Global Config → Pcaps” page to a non-zero value.

The file size and number of files to keep should be tuned according to available disk space.

These files are rotated: traffic starts to be written into a new file once the desired size of current one is reached.
Once the configured number of files is written, writing starts into the first file again.

12.2. Live ABC SBC Information 205

FRAFOS ABC SBC User Guide, Release 5.5.2

Note: the files use extensions “.pcapXX”, where the “XX” part corresponds to the file number. If the global config
option to set number of files to keep is modified, all existing traffic.pcap* files are deleted on the SBC once the
configuration change is activated.

The administrative page “Monitoring → User Recent Traffic” allows administrators to retrieve SIP traffic for a spe-
cific IP address. Also a secondary IP address can be included in which case packets matching either IP address will
be retrieved. The retention policy for the stored traffic can be configured as shown in the Section pcapparameters.

To retrieve the SIP traffic, a user must choose the time interval within the available retention period (configuration
of which is described in Section pcapparameters), IP address, and press the “Get PCAP file” button. Processing
can take up to several minutes depending on the time interval chosen. The traffic comes in an archive in PCAP
format along with TLS session keys that can be used to decrypt SIP traffic that came over TLS connections.

Wireshark can be used to inspect encrypted TLS traffic using the session keys, see the following link for a detailed
HOWTO: https://jimshaver.net/2015/02/11/decrypting-tls-browser-traffic-with-wireshark-the-easy-way/

Fig. 8: User Recent Traffic

12.2.9 View Logs

“Monitoring → View logs” allows access to ABC SBC logs. The lnav program is used as the log viewer. For
details on its control and usage, please refer to its documentation (https://docs.lnav.org/en/latest/).

The log viewer allows access to log files located in the /var/log directory and its subdirectories. The ABC SBC
logs are split into following categories:

• container_init - Logs related to container bootstrap initialization.

• ha - Logs specifically related to high availability.

• mgmt - Logs related to periodic jobs (tasker services).

• monitoring - Logs related to file_uploader services.

• sbc - The default logging location for all other services.

• status/config.log - Logs from the last config activation.

• status/config.status - Status of the last config activation.

• syslog-ng - Logs specifically related to syslog-ng.

Note: Log files follow the S6 format and rotation conventions. Each logging directory contains a current file with
the latest log entries. When logs are rotated, old log entries are archived in a file named @timestamp.s, where
timestamp is a TAI64N timestamp representing the absolute time of the rotation.

12.2. Live ABC SBC Information 206

https://jimshaver.net/2015/02/11/decrypting-tls-browser-traffic-with-wireshark-the-easy-way/
https://docs.lnav.org/en/latest/

FRAFOS ABC SBC User Guide, Release 5.5.2

12.3 Measurements and Monitoring

The ABC SBC provides SIP and RTP traffic related counters (general, per Realm/Call Agent and user defined
measurements). These measurements are exposed to external monitoring tools such as Prometheus or SNMP.

Starting ABC SBC version 5.5, FRAFOS recommends to use the Prometheus protocol for monitoring. The SNMP
is considered deprecated however to ease transition from SNMP to Prometheus, it is still possible to integrate
SNMP support with the SNMP daemon running on the host. Please note, all SNMP related global config options
are used for ABC SBC nodes up to 5.4 version only.

12.3.1 Prometheus Configuration

In ABC SBC 5.5 the Prometheus pull service became part of Unified SBC management service. All necessary
configuration is done in Prometheus directly.

• In targets use SBC IP address or hostname for which Unified SBC management service is configured. Use
4224 as a port. For example: 192.168.10.20:4224

• As a metrics_path use the /api/v1/metrics/prometheus value

TLS certificates can be used to secure a connection between Prometheus and SBC node if needed. To do that assign
a TLS profile with required certificates to the IMI interface.

Metrics can also be obtained by asking the server directly using curl tool. For example: curl -k
https://<SBC_node_IP>:4224/api/v1/metrics/prometheus. Please note, the port 4224 is controlled by firewall and
by default only CCM is allowed to access it.

12.3.2 SNMP Configuration

On the host machine, an SNMP daemon must be configured and the AgentX socket directory provided by the
daemon must be mounted into the SBC container.

Using snmpd, the following configuration file (“/etc/snmp/snmpd.conf”) can be used:

agentAddress udp:161,udp6:[::1]:161

Frafos GmbH Enterprise OID
view frafosStats included .1.3.6.1.4.1.39695

UCD-SNMP-MIB::prTable
view frafosStats included .1.3.6.1.4.1.2021.2

NET-SNMP-EXTEND-MIB::nsExtend
view frafosStats included .1.3.6.1.4.1.8072.1.3.2

rocommunity sbc_com_321 0.0.0.0/0 -V frafosStats

master agentx
agentXSocket /var/agentx/master

Then, the SBC container must be started with --mount type=bind,src=/var/agentx,dst=/var/agentx to
mount the AgentX socket directory into the container. The ABC SBC will automatically detect the presence of the
AgentX socket and start its agent.

12.3. Measurements and Monitoring 207

FRAFOS ABC SBC User Guide, Release 5.5.2

12.3.3 General Prometheus Statistics

General ABC SBC statistics related to calls, transactions and registrations.

Explanation of terms used in following table:

• rx - data received by ABC SBC

• tx - data sent by ABC SBC

Table 1: General metrics
Metric Name Attributes Type Description
abcsbc_calls direction: all gauge Total number of established calls.
abcsbc_call_starts_total direction: all counter Total number of call starts: the met-

ric sums both successful and rejected
calls.

abcsbc_bits_total direction: all counter Total number of RTP data transferred
in bits.

abcsbc_sip_messages_total direction: rx, tx
type: request, reply

counter Total number of SIP messages.

abcsbc_sip_retransmissions_total direction: tx
type: request, reply

counter Total number of SIP re-transmissions.

abcsbc_transactions type: uac, uas gauge Number of ongoing UAC/UAS trans-
actions.

abcsbc_open_ports type: media gauge Number of media ports used.
abcsbc_high_availability_status uuid: ID of HA group

name: HA group name
gauge HA node status

• 0: Unknown
• 1: BACKUP
• 2: MASTER
• 3: FAULT
• 4: STOP

For more information see High Avail-
ability statuses.

abcsbc_register_cache status: active gauge Number of SIP registrations.

12.3.4 Prometheus Statistics per Realm / Call Agent

Measurements listed in tables below are counted for each Realm and Call Agent separately.

Explanation of terms used in following table:

• uuid - unique identifier either of realm or call agent

• realm name - Realm name which a Call Agent belongs to (shown for call agent only)

• rx - data received by realm or call agent

• tx - data sent by realm or call agent

Table 2: Realm metrics
Metric Name Attributes Type Description
abcsbc_realm_calls direction: rx, tx

uuid: realm’s UUID
name: realm’s name

gauge Number of calls established to/from
call agents belonging to the appropri-
ate realm.

abcsbc_realm_call_starts_total direction: rx, tx
uuid: realm’s UUID
name: realm’s name

counter Total number of call starts to/from
realm. This metric sums both success-
ful and rejected calls per realm.

abcsbc_realm_bits_total direction: rx, tx
uuid: realm’s UUID
name: realm’s name

counter Total number of RTP data in bits re-
layed to/from realm.

12.3. Measurements and Monitoring 208

FRAFOS ABC SBC User Guide, Release 5.5.2

Table 3: Call Agent metrics
Metric Name Attributes Type Description
abcsbc_call_agent_calls direction: rx, tx

uuid: CA’s UUID
name: CA’s name
realm: CA’s realm

gauge Number of calls established to/from a
call agent.

abcsbc_call_agent_call_starts_total direction: rx, tx
uuid: CA’s UUID
name: CA’s name
realm: CA’s realm

counter Total number of call attempts to/from
call agent. This metric sums both
successful and rejected calls per call
agent.

abcsbc_call_agent_bits_total direction: rx, tx
uuid: CA’s UUID
name: CA’s name
realm: CA’s realm

counter Total number of RTP data transferred
in bits to/from call agent.

abcsbc_call_agent_status destination: IP or
hostname
uuid: CA’s UUID
name: CA’s name
realm: CA’s realm

gauge Call agents status:
• 0: Unknown
• 1: Sent
• 2: Resolved
• 3: Reachable
• 4: Unreachable
• 5: Partially Reachable
• 6: Overloaded
• 7: DNS Error
• 8: Error

For more information see Call Agents
status

12.3.5 Prometheus Statistics per Interfaces

These measurements are exported from the transport layer.

Explanation of terms used in following table:

• rx - data received by ABC SBC

• tx - data sent by ABC SBC

Table 4: Interface metrics
Metric Name Attributes Type Description
abcsbc_interface_sip_messages_total interface: name

direction: rx, tx
type: request, reply

counter Total number of
SIP messages per
interface.

abcsbc_interface_sip_retransmissions_total interface: name
direction: tx
type: request, reply

counter Total number
of SIP re-
transmissions
per interface.

abcsbc_register_cache_registrations_per_interface interface: name
endpoint: node IP:port

gauge Register cache per
interface statistics.

12.3. Measurements and Monitoring 209

FRAFOS ABC SBC User Guide, Release 5.5.2

12.3.6 User Defined Counters

User defined counters can be created and increased using an “Increment custom counter“ action configured in
inbound or outbound rules. This action increments a user-defined custom counter by a given value. As parameters
the counter name and the counter increment are given, see Fig. User defined counters.

Fig. 9: User defined counters

Table 5: General metrics
Metric Name Attributes Type Description
abcsbc_custom_counters name: variable name gauge Custom counter defined in GUI.

12.4 Additional Sources of Diagnostics Information

The following additional sources of management data may be also used:

• traffic monitoring and event tracking described in Section Overview of Monitoring and Troubleshooting
Techniques,

• remote monitoring described in Section Measurements and Monitoring,

• logging concealed with call log in file as described in Section managementandmonitoringref.

When trying to understand some unexpected network or SBC behavior the following facilities can be also helpful:

• Audio can be recorded as described in Section Audio Recording.

• CDRs, as described in Section Call Data Records (CDRs), include useful information.

• The ABC SBC can be configured to send notification by email if some serious error such as exhausted disk
space occurs. Configure the recipient email address under “Config→Global Config→Monitoring→Email
for sending alerts”. Configure SMTP server to which the emails will be passed under “Config→Global
Config→Monitoring→Mailserver for sending alerts” to use external mail server. Configure various thresh-
olds for alerts based on high system load, memory used, CPU waiting percentage and disk usage percentage
under “Config→Global Config→Monitoring”.

12.5 Viewing ABC SBC Logs

The GUI screen “Monitoring->View logs” allow access to ABC SBC logs. We use lnav program as the log viewer
so for further details about its control, please check its documentation (https://docs.lnav.org/en/latest/).

By default all the rotated log files like for example: syslog, syslog.1 and syslog.2.gz are displayed as single entry
in the list of log files and are displayed together by the lnav viewer. Unchecking the Join rotated log files checkbox
allows to display such log files separately.

12.4. Additional Sources of Diagnostics Information 210

https://docs.lnav.org/en/latest/

FRAFOS ABC SBC User Guide, Release 5.5.2

12.6 Coredumps

It may happen that a process does not operate properly and is terminated by signal, that may cause a “coredump”
to be generated. These coredumps are valuable for further problem debugging and might be asked by FRAFOS
support to be able to properly investigate and fix the issue.

In previous ABC SBC versions generating coredumps for the most critical process - SEMS - was allowed by default
but with containers it relies on proper host configuration that can not be influenced from the container itself.

With nowadays ABC SBC, an “alert” event is generated when SEMS process crashes regardless of the coredump
settings, so the administrator is informed about the problem and may react appropriately.

Please note, that the process coredumps may be huge and writing them may significantly prolong the time necessary
to restart a process upon a crash and thus service downtime might be increased.

Additionally, they consume a lot of space so it might be necessary to monitor HDD space of the destination used
for storing them and possibly clean that storage up when necessary.

To allow a process in container to dump a core it is recommended to install systemd-coredump package on the
host OS (Debian based Linux distribution) or its equivalent:

% apt install systemd-coredump

This service is responsible for managing coredumps generated on the host and in containers running there and can
be configured (see man coredump.conf) to fulfill the particular deployment needs.

The coredumpctl utility contained in the mentioned package can be used to list:

% coredumpctl list -r
TIME PID UID GID SIG COREFILE EXE SIZE
Fri 2023-06-16 12:18:12 CEST 81029 0 0 SIGILL present /usr/sbin/sems 1.2M
Fri 2023-06-16 11:46:04 CEST 257465 0 0 SIGILL present /usr/sbin/sems 1.2M
Fri 2023-06-16 11:44:18 CEST 257212 0 0 SIGILL present /usr/sbin/sems 1.2M
Fri 2023-06-16 11:42:41 CEST 105270 0 0 SIGILL present /usr/sbin/sems 1.2M

and export particular coredumps:

% coredumpctl dump 257212 | gzip > core.gz
PID: 257212 (sems)
UID: 0 (root)
GID: 0 (root)

Signal: 4 (ILL)
Timestamp: Fri 2023-06-16 11:44:17 CEST (2 days ago)

Command Line: /usr/sbin/sems -P /var/run/sems/sems.pid -f /etc/sems/sems.conf
Executable: /usr/sbin/sems

Control Group: /machine.slice/systemd-nspawn@sbc-5.3.0.service/payload/system.slice/
→˓sems.service

Unit: systemd-nspawn@sbc-5.3.0.service
Slice: machine.slice

Boot ID: 1e74911d896440818965717facd36aa4
Machine ID: 16a8ad16f7004e0eac68aded464561d9
Hostname: sbc
Storage: /var/lib/systemd/coredump/core.sems.0.

→˓1e74911d896440818965717facd36aa4.257212.1686908657000000.zst (present)
Size on Disk: 1.2M

Message: Process 257212 (sems) of user 0 dumped core.

Stack trace of thread 77200:
#0 0x00007f162dea4d36 n/a (libc.so.6 + 0x85d36)
#1 0x00007f162dea73f8 pthread_cond_wait (libc.so.6 + 0x883f8)

(continues on next page)

12.6. Coredumps 211

FRAFOS ABC SBC User Guide, Release 5.5.2

(continued from previous page)

#2 0x000055a9accc4d2b n/a (/usr/sbin/sems + 0xd6d2b)
ELF object binary architecture: AMD x86-64

Please note, that the “Enable coredumps” option on SEMS tab in Global config settings, that was used to allow
coredumps for SEMS process running directly on the host, is not used any more with ABC SBC 5.3 and higher
and is present just for compatibility with older ABC SBC versions.

12.6. Coredumps 212

Chapter 13

Securing SIP Networks using ABC SBC
and ABC Monitor (optional)

13.1 SIP Security Principles: Collect, Analyze and Police

Like any other Internet-based service VoIP servers can be target of fraud attempts, denial of service attacks and
abnormal operational conditions such as registration storms after recovery of a failed router with a user population
behind it. These have become common with prevalence of the SIP technology for telephony and need to be dealt
with on a daily-basis. A key function of the SBC is to fend off such situations so that the infrastructure behind the
SBC and service for the end-users remains unaffected.

Administering any service securely always consists of three steps: collect data, analyze it and police. Each of
these steps is a necessity and always requires human judgment of an administrator. This can be challenging with the
sheer amount of data to be handled and may resemble looking for the proverbial needle in the haystack. Every day
a public SIP service for one thousand subscribers generates as much as 7 GB in 13 millions SIP packets! Obviously
making an administrator look at every single SIP packet is not feasible and the ABC SBC FRAFOS solution comes
therefore with many administrative aids.

The first two steps, gathering data and analyzing it, can be purchased using various tools. FRAFOS however
strongly recommends use of its ABC Monitor because it has a unique access to internals of the ABC SBC and can
report on many specifics not seen outside of it. The data gathered by the ABC Monitor known as events come
from inside the ABC SBC and can therefore reveal information not visible to anyone else: plain-text signaling and
media which is encrypted to the outside (always the case with WebRTC), internal information such as reasons why
a specific SIP request has been dropped, or correlation of dialogs that are obfuscated to the outside using Topology
Hiding.

The following real-world example shows a typical attack on a SIP service. The Figure Screenshot of a monitored
password-guessing attack shows the course of the attack and defense against it. The attack started on March 22,
2016 at 1AM local time from an IP address located in Guangzhou, China. It consisted of attempts to register
as users with numbers beginning with “122”. The site was initially not taking any effort to fend the attack off,
resulting in 1000 authentication attempts per hour. While the attacker didn’t succeed in registering a URI protected
using well-chosen passwords in this case, endurance or a weak password could have crowned his undertaking with
success. Therefore at about 10:30 local time, the administrator took an action and locked out the attacker’s IP
address. It took exactly one hour until the perpetrator realized his tool was receiving no responses back and started
sending from a different IP address. Now the SIP service administrator found out that a static policy is not good
enough and enabled a dynamic policy that locks an IP address if too many failed authentication attempts come
from it. The effect came instantly: the attacks were locked at transport layer and began to appear only shortly in
hourly interval: that’s the period after which the attacker changed his source IP address – few attempts were then
observed in the ABC Monitor until the new source IP address was banned again.

213

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 1: Screenshot of a monitored password-guessing attack

This example is re-iterating the importance of the fundamental security principle: collect, analyze and police. If
the site administrator didn’t have good data about what’s going on, he would be literally blind and the authentication
attack could have remained unnoticed. All in all, two requests per second is not an excessive amount of traffic on
a multi-thousand user-site, and the way the SIP protocol is designed almost every SIP request causes a 401/407
authentication challenge. Which leads to the second, analytical point. Usage data needs to be analyzed efficiently.
The administrator needs to find out if there is anything going on at all, what are the specific patterns of an attack
that can be used to fend it off, and who is the originator. The last step, fending the attack off, is the easiest once the
nature of an attack is known.

These three facets of the security life-cycle are documented in the following sections. We will discuss them in
the order a SIP packet encounters on its way. The first thing that happens to a freshly arrived SIP packet is it is
processed by a ruleset that represent a site’s security policy. We describe the available rules and practices for using
them in the Section Police: Devising Security Rules in the ABC SBC.

13.1. SIP Security Principles: Collect, Analyze and Police 214

FRAFOS ABC SBC User Guide, Release 5.5.2

13.2 Police: Devising Security Rules in the ABC SBC

There is nothing more dangerous than security. Sir Francis Walsingham, Queen Elizabeth’s Principal Secretary

The objective of the policing functionality is simple to state: Filter unwanted traffic as soon as possible before it
causes harm. In order to achieve this objective, reasonable policies must be administered which permit legitimate
and drop harmful traffic.

The delicate challenge is to differentiate between “friend and foe”. Resolving this dilemma often requires a learning
period – the administrator or an automated system on his behalf need to find out the presence of illegitimate traffic
and its originator. An administrator can do this by analyzing traffic. The advantage of this approach is that human
assessment of the situation can capture finesses a computer fails to see. This argument is for example the reason
why air traffic control has never been fully automated – computers are still not trusted a judgment about abnormal
situation.

The disadvantage of relying on humans is, not surprisingly, the human factor too. Humans may fail to see an
abnormality in sheer amount of traffic and keep alert 24 hours a day. That’s what computers are good at: they can
look over gigabytes of traffic relentlessly, find patterns they have been taught to look after, and raise alarms any
time of day as soon as they appear.

Therefore we at FRAFOS suggest that highest level of security of a SIP service is given when automated traffic
filtering is combined with computer-aided human judgment.

In the following list we show typical attack types and also ABC SBC policies to deal with these.

• Intrusion attacks are attempts to obtain unauthorized access to a system or to a SIP user’s account. They
come by nature as an uninvited surprise at the most inconvenient time. The challenge is therefore to counter
them as quickly as possible. In the Section Automatic IP Address Blocking we are showing how to automate
prohibition of malicious traffic even before administrators do notice.

• Harassing traffic may be easier to detect and yet inconvenient to deal with. Unlike with real attacks, the
harassing traffic is mostly an unintended side-effect of a broken implementation or configuration of some
SIP devices. It doesn’t try to masquerade or surprise yet if coming in large quantities, it may have the same
devastating effect as a malicious attack. The capability to filter out such “noise” helps to reduce security
risk, off-load the infrastructure, and focus on the traffic that matters. We show how to block well-known
sources of harassing traffic at both IP and SIP layer in the section Manual SIP Traffic Blocking.

• Unprivileged traffic is traffic that does not appear harmful yet it has not been explicitly authorized to use a
SIP service. Such may not appear harmful on the first sight, yet it may be also an initial probing prelude to an
actual intrusion attack. It appears therefore a wise idea to drop traffic which does not demonstrate appropriate
credibility before it turns into a harm. This way users exhibiting proper behavior are prioritized over
users that don’t. The simplest and yet most powerful credibility test is that of successfully completed SIP
registrations. See Section Blocking a User by his Registration Status for guidelines how to use it. Also note
that the credibility-test is extended to lower-layer by a generalized technique known as grey-listing (Section
Automatic Proactive Blocking: Greylisting).

• Excessive traffic may have many root causes: Denial of Service (DoS), breach of service-level agreements,
or SIP network misconfiguration. Regardless of the cause the results are always the same: quality of service
(QoS) declines for legitimate uses. To prevent such QoS impairments, a site better chooses to set limits on
SIP and or RTP traffic and drops traffic exceeding the limits. We show how to shape traffic in Section Traffic
Limiting and Shaping. Traffic shaping is also important to discover some sort of attacks like SIP password
guessing: if the attacking SIP device tries to masquerade as a legitimate user, the high signaling rate it needs
for guessing will give it away.

• Excessively long calls are another irritating phenomena that needs to be dealt with in order to reduce a high-
charge risk. Most often it is caused by SIP devices that do not terminate calls properly. Fraud attempts are
also known that have been trying to gain maximum by running calls as long as possible. In Section Call
Duration Control we explain how to keep a SIP service robust against infinite calls.

• Improper content in SIP signaling or SDP media can bring insufficiently robust SIP devices to failure. This
situation doesn’t happen so often because SIP devices typically do not have such processing capability like
general purpose computers to be a real magnet for all kinds of viruses. Yet the situation changes as Android
telephones come on the market and features offered by servers expand. Academics have already described

13.2. Police: Devising Security Rules in the ABC SBC 215

FRAFOS ABC SBC User Guide, Release 5.5.2

SQL injection attacks12 : They crafted SIP messages which included SQL commands, and the SIP servers
passed these to backend software. When the software is not sufficiently robust, opening a web page to see
a list of completed calls will also launch a potentially dangerous SQL query. If content of SIP and SDP is
considered a risk, more aggressive mediation is needed. See Sections SIP Mediation and SDP Mediation for
more information how to filter SIP/SDP content. Particularly header-field whitelisting may be instrumental
for this purpose.

The ABC SBC offers several instruments for filtering undesired traffic. There are two types of: filters operating at
IP/transport layer for the highest performance and filters operating at SIP layer when more sophisticated filtering
criteria are needed. For example a well-known flooding attacker is best eliminated by filtering out all traffic from
his IP address. On the other hand, if a single SIP user behind a SIP trunk IP misbehaves, blocking the whole trunk
IP would be throwing the baby out with the bathwater. In such a case, the SIP-layer filtering would be a safer
choice, albeit not that fast.

The IP-layer rules are managed from the administrative menu under “System → Firewall“. The screen offers a
search box where one can look for an IP address to see if it is present on any of the lists, and then several firewall
rule lists. The lists are ordered by precedence: the top lists are more manual, have higher precedence and override
the bottom-placed lists. The top lists include Manual low-level rules, Exceptions to automatic blacklists, and
Manual Firewall Blacklists and are described in Section Manual IP-layer Blocking. The bottom lists are generated
in an automated way using built-in security assessment algorithms without administrator’s intervention, can be
overridden by the manual lists in the top, and are described in the Sections Automatic IP Address Blocking and
Automatic Proactive Blocking: Greylisting.

Fig. 2: Firewall Rules Management

SIP layer filtering is then described in Section Manual SIP Traffic Blocking. If binary yes/no policies seem too
harsh, placing quota on the traffic may be a better answer, which is described in Section Traffic Limiting and
Shaping.

1 Geneiatakis, Dimitris, et al. “SIP message tampering: the SQL code injection attack.” Proceedings of 13th International Conference on
Software, Telecommunications and Computer Networks (SoftCOM 2005), Split, Croatia. 2005.

2 Abdelnur, Humberto, and Olivier Festor. “Advanced fuzzing in the VoIP space.” Journal in Computer Virology 6.1 (2010): 57-64.

13.2. Police: Devising Security Rules in the ABC SBC 216

FRAFOS ABC SBC User Guide, Release 5.5.2

13.2.1 Manual IP-layer Blocking

In some situations, e.g. if DOS attacks are encountered, incoming IP traffic may better be blocked already on the
operating system firewall (nftables) level so that CPU processing power and memory is saved as the SBC processes
don’t need to handle the traffic.

The ABC SBC offers a graphical user interface to configure the firewall rules under “System → Firewall“. There
are several rules list, the top-positioned rules list take precedence over the bottom rules list and are processed in
the exactly same order as shown in the GUI.

If incoming packets do not match any of these rules, default rules apply. Traffic to signaling and media interfaces
will be accepted if in the declared destination port range, traffic to administrative port numbers will be permitted
on XMI and IMI interfaces, all other traffic will be dropped.

The top-most rules list is “Manual low-level rules” and it is a “swiss army knife” for firewall administrators. While
it is the first-in-order list, we recommend to use it as the last resort due to extra complexity. Simpler rules such
as “Exceptions” and “Manual blacklists” bellow are easier to manage and audit. Nevertheless the low-level rules
my be still useful in situations when administrators wish to limit administrative access to well-known IP addresses
or permit additional administrative protocols. These rules allow to specify IP flows using source and destination
address and port numbers, and whether these flows should be accepted or dropped. That also means that attention
must be paid to the order of these rules because it does affect the result. For example, the administrator can use
the low-level rules block all traffic coming from the RFC1918 private IP address space as shown in Figure Manual
low-level Firewall Rules. When a filtering criteria such as IP address or port number is left blank in the rule, any
value in incoming IP packet matches.

Fig. 3: Manual low-level Firewall Rules

The remaining firewall rules only refer to signaling (SIP and Websocket) interfaces and are simple unordered lists
of IP and subnet addresses.

“Exceptions to the automatic blacklist” are second in order and could also be called “Whitelists”. They take prece-
dences over any of the blacklists bellow. This is important to be able to override too zealous behavior of automated
blacklists. This is often the case when traffic of multiple users is coming from behind a single IP address due
to NATs or a peering topology. Then the automatic blacklists triggered by a single user would block all others
behind their shared IP address. Similarly a SIP site administrator may want to exempt himself from being auto-
blacklisted, because his signaling tests may get him blacklisted. Consequently, he would not be even able to open
an SSH session to the ABC SBC.

For example a single misbehaving URI would otherwise block an IP address and all other URIs behind it. In such
a case, it makes sense to exempt this address from automated blacklisting and address the problematic URI traffic
at SIP layer. Example of such a “Whitelist” is shown in Figure Exceptions to the automatic blacklist.

13.2. Police: Devising Security Rules in the ABC SBC 217

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 4: Exceptions to the automatic blacklist

The third in order before automatic rules is “Manual Firewall Blacklist” that can disable traffic from an IP address
or subnet even before it reaches any kind of SIP processing logic. This may make sense when a DoS attacker is
detected whose traffic is better disabled as early as possible. Example of such is shown in Figure Manual Firewall
Blacklist.

Fig. 5: Manual Firewall Blacklist

The next firewall lists, automatic blacklist and greylist, are populated in an automatic way by ABC SBC, and can
only be flushed by administrator. The are described in the subsequent chapters Automatic IP Address Blocking and
Automatic Proactive Blocking: Greylisting.

13.2.2 Automatic IP Address Blocking

The ABC SBC implements an automated protection process for SIP-layer close-to-real-time detection and IP-layer
elimination of offending SIP traffic. This combination provides application-aware assessment with lower-layer
performance and helps to eliminate offending traffic without manual administrator intervention. This level of
automation cuts the detection-reaction time to almost real-time reactiveness.

A picture tells more than thousand words: The Figure Number of Events with and without Automatic IP Address
Blocking shows the profound effect of automated blocking. The event timeline begins under protection of automated
blocking in a calm way with about fifty events a minute. When at 23:30 the administrator turns off the automatic
protection, the offending traffic finds its way and builds up rapidly. One hour later, 2500 events are already reported

13.2. Police: Devising Security Rules in the ABC SBC 218

FRAFOS ABC SBC User Guide, Release 5.5.2

every single minute, most of them failed authentication. This unfavorable status remains until the protection is re-
enabled. Then, it takes less than five minutes until order is restored again.

Fig. 6: Number of Events with and without Automatic IP Address Blocking

Intrusion attacks, by their very definition and purpose, come uninvited. Sometimes they may try to masquerade
themselves in a way that the offending traffic looks innocent: Low-pace, using names of legitimate SIP device
types. A human reaction may be too slow to identify such an attack. Therefore the automated process comes in: It
acts before a human administrator could.

The ABC SBC protection process is based on the following empirical observations: Offending traffic comes in
abnormal quantities, which are indicated by repetitive failures, these failures are linked to an IP address, and the IP
address can be blocked. In other words, when some of the security-related events come repeatedly from the same
source, it is as good as certain we are dealing with an attack and need to isolate that.

Linking repetitive failures with an offending source is a quite reliable assumption. Singular failures do occur,
for example if a softphone user types in a wrong SIP password an authentication failure event is reported. Yet if
the same event is repeated many times, the more likely explanation is we have encountered a password-cracking
attack. Leaving such an attack unattended creates a ticket for troubles. At the pace of 2800 authentication attempts
per minute (45 per second) shown in our example, an attacker could crack a trivial password taken from Oxford
Advanced Learner’s Dictionary (185,000 entries) in less than 70 minutes!

Similarly, when a source continues to exceed traffic limits we are dealing with a Denial of Service attack, and when
the ABC SBC is receiving repeatedly 403s from a downstream SIP service we know we are dealing with a scanning
attack in which an attacker is trying to find a gap in a dial-out authorization policy.

In such a situation banning the originating source address at the OS layer is the safest way to keep the attack from
the infrastructure. Care needs to be applied if in the network topology multiple users exist behind a single IP
address: then legitimate users could be banned as well as the actual offender. This could be for example the case
with peering traffic from behind a SIP proxy, or multiple users behind a single NAT.

The immediate effect of automated IP Address Blocking can be seen in Figure Number of Events with and without
Automatic IP Address Blocking: At the very moment when it is enabled, the storm of authentication attempts calms
down. It continues to appear briefly when either the attacker changes his IP address or the maximum “banning time”
expires – then the detection mechanism strikes in again and the attacks vanish.

Once a source IP address is detected as a repeating offender, all of its traffic will be silently dropped. The list of
all currently banned IP addresses can be found in the menu under “System → Firewall → Auto FW blacklist →
Full List “ together with the remaining time they are supposed to spend on the list.

13.2. Police: Devising Security Rules in the ABC SBC 219

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 7: Automated Firewall Blacklist

Scoring system

This effect is achieved by ABC SBC monitoring various occurrences that add to a “score” of a potential offender.
To be banned, traffic of an offender must induce several serious events within a pre-configured period of time. Once
the score is high enough to identify the originating IP address as “serial offender”, the address is put on a blocking
list and stays there for a pre-configured time.

The events that add to the score are:

• limit for excessive traffic,

• message-dropped for messages that the administrator chose to drop using the drop action,

• auth-failed for failed authentication attempts,

• log-reply for transactions which were declined by a downstream SIP entity,

• and significant errors to pass SIP compliance sanity checks.

SIP compliance sanity checks include:

• Request sequence number violation (based on CSeq checking).

• Request parsing errors:

– malformed first line,

– missing Via, CSeq, From, To or Call-ID header field,

– Unparsable Via, CSeq, From, To, Call-ID or RAck (if included) header field.

Please note: sanity checks errors do not trigger any event.

Each of these events count as 1 offense, with a negative score of 1.

The scoring system is implemented like a leaky bucket into which water is poured regularly. Once the bucket is
empty, the offending IP is blacklisted:

• each new IP address starts with a bucket filled with a certain amount of water in it (start score).

• each offense decreases that score by 1.

• for every second passed, some water is poured into the bucket (time bonus).
If the start score is not considered, a certain IP is allowed time bonus x time offenses per time. For example,
if the time bonus is set to 0.0001, this means that 0.0001 x 3600 = 0.36 offense are allowed per hour. With
0.005, this raises to 0.005 x 3600 = 18 offenses per hour, or 0.3 offenses per minutes.

The start score raises the score at the beginning so that the first offense does not cause blacklisting immediately
(except if a huge time bonus is setup, which is not recommended), so that in normal cases it should be set to a value
greater than 1.

13.2. Police: Devising Security Rules in the ABC SBC 220

FRAFOS ABC SBC User Guide, Release 5.5.2

Once an IP has been blacklisted, and the blacklisting expired, the score starts fresh as for a new IP.

If no offense has been registered in a certain amount of time (time to remove entries), the IP record is deleted, so
that the next offense for that IP will reset the score to its starting value.

Given these settings, different strategies can be implemented:

• trust strangers: this strategy starts with a high start score (> 5), but won’t allow any other offenses after
that by using a very low or 0 time bonus.

• forgiver: the forgiver will forget about IPs that show a good conduct very fast (< 300s).

• close watch: the close watch will not allow much from the beginning (start score low; ~ 1), allows an offense
every now and then (time bonus ~ 0.0005 / s = 1.8 / hour) and takes a long time to forget (time to
remove entries > 3600).

Please note that these strategies can be combined together to allow for proper functionality without letting bad
behavior slip through.

Setting up automatic blacklisting

Automated blacklisting is turned off by default. To enable it perform the following steps:

• Turn it on. Under “Config → Global Config → Firewall“ turn on “Blacklist IP addr for repeated signal-
ing failures“. This will enable the automated blocking process that will process the “score” for IP addresses.

• Fine-tune it if necessary:

– The options “Signaling failures blacklist: IP address start score before any offense“ (recommended
value: 2.8) and “Signaling failures blacklist: rate per second used to calculate a time-related bonus
between offenses“ (recommended value: 0.0005) in the same global configuration section allow to
specify a threshold. When exceeded, the offending IP address will be blacklisted. The first parameter
specifies an initial “allowance” that helps to overcome initial problems like forgotten password. The
other parameter sets an error rate which can be tolerated over time.

– The option “Signaling failures blacklist: time in seconds to remove entries for which no event has
occurred from score calculation:“ states how long an IP address continues to be suspected after it
produced its first security events. Recommended value is 600.

– The option “Time in seconds to blacklist IP addr for signaling failures:“ determines how long an
offending IP address stays on a blacklist. Recommended value is 3600.

• Define what occurrences add to the blacklisting score:

– To include authentication failures and SIP protocol sanity checks, enable the options Sanity and Auth
under “Realms → Call Agents → Edit → Firewall Blacklisting“. If this CA option is not set, the
traffic coming from IP addresses within this CA will not be blacklisted.

– Additionally scripting actions used for constraining undesired traffic may be set up to add to the black-
listing score. To enable the “drop” action to add to the score, check its “Blacklist by firewall if repeated”
option as shown in the Figure The Drop Rule Options. To count originators of requests that were re-
jected by a downstream server, use the action Log message / Event for replies, include message codes
you are concerned about and turn on the option Log to firewall blacklist. The Figure Scoring Rejected
Requests shows an example of such a rule intended to decline scanning attacks trying out calls to various
telephone numbers. The guesses frequently fail and cause the replies with code 604. If this happens,
the action Log message / Event for replies increases the blacklisting score.

Fig. 8: The Drop Rule Options

13.2. Police: Devising Security Rules in the ABC SBC 221

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 9: Scoring Rejected Requests

Note again that blacklisting can impair legitimate users who share the same IP address with an offending user.
This is often the case with NATs or a trunk Call Agent represented by a single IP address and a single user that is
misbehaving. In such a case, it may make sense to turn off auto-blacklisting for such a Call Agent, and deal with
the misbehaving URI using SIP-layer filtering as shown in Section Manual SIP Traffic Blocking.

13.2.3 Automatic Proactive Blocking: Greylisting

Sometimes an automated blacklisting policy may be too reactive in that it begins to block traffic sources only when
they have been already “caught” misbehaving. An alternative automated and sterner policy, greylisting, may be
used instead to block suspicious traffic coming from an interface preemptively.

The basic idea is very simple: Permit signaling traffic from unknown sources for only a temporary “probation
period”, accept it if some legitimate criteria is established within this period and block (greylist) it otherwise. In
this case, all packets coming from the IP address will be blocked at OS layer for maximum performance. This
concept is stronger than blacklisting in that it doesn’t wait until a misbehavior is spotted. An attacker trying to
remain “under the radar” will not be tolerated any more. A single useless probing packet from his IP address to an
ABC SBC signaling port will get him greylisted.

To enable grey-listing, you need to establish what makes legitimate traffic. An often used criteria is completion of
authenticated SIP registration. To set up greylisting, proceed with the following steps:

• Turn greylisting on for an interface. Go to System → Interfaces → Edit → Greylist. At this moment
signaling coming over this interface from an IP address will be dropped if the criteria does not establish its
legitimacy within a strict time window.

• Define the legitimacy criteria. This is achieved using the actions Log to grey list and Log message / Event
for replies. The former immediately accepts a request source IP address. The latter does so later only when
an answer with required status code comes back and can do so for UAC, UAS or both.

• Fine-tune greylisting global parameters if needed:

– time delay in seconds to give IP a chance to prove validity,

– time period in seconds when IP can be blacklisted if repeats and did not prove validity,

– time in seconds to keep IP on blacklist,
– time in seconds to keep IP on whitelist,
– additional ports or port ranges (a:b) to check in addition to signaling ports, space separated.

Source IP addresses of cached registration bindings are implicitly accepted after receiving a successful response
from the downstream registrar. This helps with a single administrative domain: an authenticated registration is
quite a credible proof of sender’s legitimacy.

However in scenarios with peering domains and other scenarios where SIP devices do not register, legitimacy of the
senders must be established using some explicit criteria. To asses such a non-registering SIP sender, administrator
must choose SIP transactions that demonstrate the sender is not an offender. This requires knowledge of a site’s
policy. For example, accepting an IP address based on an arbitrary 200-completed SIP transaction may be too
relaxed, as any sender of a SIP OPTIONs “PING” packet that is “PONGed” would then qualify. Insisting on 200-
completed INVITEs may be too harsh on the other hand, as a canceled call attempt would result in graylisting the
caller. Therefore the acceptance policy must be chosen with knowledge of what SIP transactions shall or shall not
be accepted by the downstream SIP elements.

13.2. Police: Devising Security Rules in the ABC SBC 222

FRAFOS ABC SBC User Guide, Release 5.5.2

The qualifying SIP transactions are tagged using the “Log to grey list” and if dependent on the resulting transaction
status the “Log message / Event for replies” actions. When a transaction is processed using either action, and
completes with a matching response code, then IP address of the SIP UAC, UAS or both will be accepted and will
not be greylisted.

An example of such an A-rule is shown in Figure Greylisting Rule Example: Accept 200 REGISTERs and selected
non-REGISTER codes. It accepts IP addresses from which REGISTERs come that complete with the 200 status
code, and any other SIP requests that complete using some of the specified status codes. In all other cases, the
IP address sending a packet to the ABC SBC will be blacklisted. That includes the cases when it is a non-SIP
packet that doesn’t even make it to rule processing, a REGISTER which doesn’t result in a 200, and for example
an INVITE which completes with the 604 code.

Fig. 10: Greylisting Rule Example: Accept 200 REGISTERs and selected non-REGISTER codes

If we wanted to craft a more relaxed policy which does not inspect SIP answers coming back, we could use the
action Log to Grey List instead (Figure Rule Example: Accepting an INVITE Sender’s IP Address). It accepts all
IP addresses from which an INVITE comes. Its actual impact depends on where in the rules this action is placed.
If it was in beginning of the rules, it would only block offenders sending non-SIP or non-INVITE packets to the
signaling ports. Therefore it is typically placed after several rules that drop undesirable traffic, such as request from
well-known scanners or unsolicited OPTIONs.

Fig. 11: Rule Example: Accepting an INVITE Sender’s IP Address

We also have to care about outbound SIP requests. Answer packets coming back trigger the greylisting process and
we need to have an acceptance policy as well. Typically it is quite simple under the assumptions that requests sent
to outside express consensus to communicate with the outside IP address. Therefore installing a rule in C-rules to
accept the destination address regardless of the response coming back will form a reasonable policy. Such a rule
is shown in Figure Rule Example: Permit UAS’s IP Address for Any Replies. A destination appears on the greylist
only if it sends no answer.

13.2. Police: Devising Security Rules in the ABC SBC 223

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 12: Rule Example: Permit UAS’s IP Address for Any Replies

Note that like with blacklisting, greylisting may have side-effects when there are multiple users behind a single IP
address. A legitimate user who proves himself and promotes his IP address by the greylisting procedures makes
traffic of other users behind the same IP also legitimate.

Blacklisting and greylisting may be used at the same time. In this case the side-effects of blacklisting will prevail
as blacklisting goes first in the processing order. Then even if an IP address is accepted by the greylisting criteria,
and a misbehaving user will cause the IP address to be blacklisted, all traffic from the IP address will be blocked.

It is also important to know that ABC SBC resets greylists upon every restart and starts re-learning them. This
makes re-configuration and/or rapid failovers more robust against grey-listing innocent IP addresses. Otherwise
a change of greylisting policies could fail to accept an IP address that has been already spotted under a previous
policy. Similarly, a fail-over back and forth may also result in greylisting a legitimate IP address.

Checking the actual status of an IP address can be done on the administrative page “System → Firewall → Search
IP“, from where one can also retrieve the full current blacklist and greylist.

Fig. 13: Firewall Search IP Box Results

13.2. Police: Devising Security Rules in the ABC SBC 224

FRAFOS ABC SBC User Guide, Release 5.5.2

13.2.4 Manual SIP Traffic Blocking

The manual blocking is used to block well-known offending traffic using SIP-layer criteria. The SIP-layer blocking
allows to establish SIP-layer filtering criteria, and it also allows to indicate to the upstream SIP client why a request
is being denied using a SIP response code.

The reasons for using this type of blocking can be multifold: declining traffic from unsupported call agent types,
refusing to process some unsupported applications like SIP for presence, or banning traffic from SIP users that
have become unwelcome and cannot be dealt with using IP-layer blacklisting because they share IP address with
other legitimate users.

A call can be refused silently or using a SIP response using either of the following methods:

• Reply to request with reason and code. This action declines a SIP request using response code and phrase.
Optionally a header field may be attached to the response. Replacement expressions can be used in the
response phrase and header field. Multiple header fields can be introduced by putting \r\n between them. An
event of type “call-attempt” is generated for declined INVITEs.

• Drop request. This action drops a request silently and generates an event of type “message-dropped”. Events
can be grouped by a key in which case the events repeat within short interval of time (ten seconds) if their
keys differ. If there is no key, the event does not repeat until offending messages stop to arrive for ten seconds.

If either action is executed, rule processing stops immediately and no further rules are processed. Neither do
the requests count towards limits (see Section Traffic Limiting and Shaping) if the limits are placed behind the
reply/drop actions.

The remaining question is how to discriminate between trusted and untrusted traffic. The ABC SBC can use any
of its rule conditions described in Section Condition Types. The most often used conditions include:

• SIP header elements (Section Blocking by User-Agent, From and Other SIP Headers Fields)

• Source IP address (Section Blocking by IP Address)

• Registration status (Section Blocking a User by his Registration Status)

• Geographic origin (Section Blocking by Geographic Origin)

The following subsections documents the cases that are commonly used to filter out unwanted traffic based on
different message elements. In the simple case, the tested elements are checked against fixed values like in the
Figure The Drop Rule Options where the SIP requests are dropped if their Header Field User-Agent contains
“scanner” or “sipcli”. If the list of values to check against is longer, devising many rules may become cumbersome,
use of provisioned tables is recommended as shown in the Section Provisioned Table Example: URI Blacklist.

Blocking by User-Agent, From and Other SIP Headers Fields

SIP request elements include many header fields upon which an administrator may make an accept/reject decision.
For example, a SIP user may be found problematic and blocking his IP address is impossible because there are other
legitimate SIP users behind the same IP address. In such a case it makes perfect sense to block all SIP requests
with an offending address in the SIP From header field. Alternatively a whole domain can be blocked the same
way. Conditions for this, From URI and From Domain, are available in ABC SBC rules, others are described in
the Section Condition Types.

Not all header field names are available in the SBC rule conditions, and some may be even custom-made. Therefore
there is also the possibility to refer to a header field by header name. That can be particularly useful when checking
for some well known User Agent types that show their signature in the User-Agent SIP header field. Cases have
been reported when this type of filtering has been used to block traffic from SIP devices with new untested firmware
causing registration storms. Other common case is blocking well-known SIP scanners, one of such being known
as “friendly-scanner”. Their packets look like this:

OPTIONS sip:100@212.79.111.155 SIP/2.0.
Via: SIP/2.0/UDP 37.187.191.144:5064;branch=z9hG4bK-3414626242;rport.
Content-Length: 0.
From: "sipvicious"<sip:100@1.1.1.1>;tag=64343466366639623133633401333731383339333235.

(continues on next page)

13.2. Police: Devising Security Rules in the ABC SBC 225

FRAFOS ABC SBC User Guide, Release 5.5.2

(continued from previous page)

Accept: application/sdp.
User-Agent: friendly-scanner.
To: "sipvicious"<sip:100@1.1.1.1>.
Contact: sip:100@37.187.191.144:5064.
CSeq: 1 OPTIONS.
Call-ID: 383887304209490351968881.
Max-Forwards: 70.

A rule to detect, drop and record such requests from inbound (A) rules is shown in Fig. Inbound rule for refusing
calls from a certain user agent.

Fig. 14: Inbound rule for refusing calls from a certain user agent

If the number of blocked elements become too long to have a separate rule for each of them, one can also utilize
the provisioned tables as shown in the Section Provisioned Table Example: URI Blacklist.

Blocking by IP Address

It is possible to block a single IP address or multiple IP addresses matching a text pattern with actions configured
with Source IP condition in the inbound (A) rule see Fig. Inbound rule for refusing calls from a certain IP address.

13.2. Police: Devising Security Rules in the ABC SBC 226

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 15: Inbound rule for refusing calls from a certain IP address

Blocking by IP Address Range

The simplest way to block a range of IP addresses is to create a Call Agent for such an IP address range, see Fig.
Definition of a Banned Call Agent, and create an inbound (A) rule for this call agent without conditions that will
refuse all messages from it see Fig. Rules for a Banned Call Agent,

13.2. Police: Devising Security Rules in the ABC SBC 227

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 16: Definition of a Banned Call Agent

Fig. 17: Rules for a Banned Call Agent

Additionally this rule example uses the “Log Event” action to alert administrator of traffic violating his policy.

Blocking a User by his Registration Status

Inbound (A) rules offer a possibility to enforce an administrative policy by blocking the request (usually an INVITE)
if its initiator is or is not registered by using condition Register Cache. It also can be used as some form or caller
prioritization if used together with CAPS limit. The test against the register cache is made using one of the following
keys:

• From URI (AoR+Contact+IP/port)

• From URI (AoR+IP/port)

• Contact URI (Contact+IP/port)

• To URI (AoR)

• R-URI (Alias)

Such requests can be refused with Refuse call with reason and code action, see Fig. Inbound rule for refusing
calls based on registration status.

13.2. Police: Devising Security Rules in the ABC SBC 228

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 18: Inbound rule for refusing calls based on registration status

Blocking by Geographic Origin

The ABC SBC can also block or otherwise discriminate incoming requests based on the country code of the region
from which they are coming. The region is determined using a Geo-IP database from request’s source IP address.
The example here generates custom events when a request comes from France.

Fig. 19: Inbound rule for Reporting on French Request Originators

13.2. Police: Devising Security Rules in the ABC SBC 229

FRAFOS ABC SBC User Guide, Release 5.5.2

13.2.5 Traffic Limiting and Shaping

Like any other Internet-based service VoIP servers can be the target of denial of service attacks. By generating
a flood of SIP requests a malicious attacker can overload the VoIP infrastructure. Such overload conditions can
negatively impair established calls and calls in progress and need to be controlled. Similarly, authorized users of a
SIP service can access the service in a way that reaches abusive dimension and needs to be controlled as well. For
example, a provider offering a flat-rate service to consumers may find that whole PBXs are connected to the SIP
accounts. This would result in losses since the pricing calculation anticipated different usage calculation. Therefore
traffic control is also needed in such a situation.

The ABC SBC offers several forms of controlling SIP and RTP traffic which are described in this Section. These
are implemented as rules which can be placed in A or C rule-basis. If used in inbound A-rules, the limitations refer
to traffic coming from a Call Agent or Realm. If used in outbound C-rules, the limitations refer to traffic sent to a
Call Agent or Realm. In either case the limitations only affect calls that passed the limitation action. Reversely,
calls that have not been processed using a limit action are not subject to such a limit. To make sure that all calls
within a realm or call-agent are subject to a limit, the action must be placed in beginning of the rules without any
condition.

More often, the call limits need to be related to a subset of traffic. For example only one parallel call may be
permitted per IP address. The criteria can vary depending on use-case and therefore the limiting actions have an
optional variable key parameter. The key specifies which traffic portion the limit applies to, and can use replacement
expressions (see Section Using Replacements in Rules). All messages (and no other) that have the same key count
towards the limit. Two often used keys are source address and combination of source address with From URI. The
former (denoted as “$si”) checks all traffic coming from any single IP address against the respective limit. The
combination of source address with AoR (denoted as “sifu“) allows that requests with distinct From URIs count
against their own limits even from behind a single IP address – particularly useful when the IP address belongs to
a PBX which serves numerous SIP addresses.

When the “Is global key” option is kept unchecked, the indexing key is scoped to the entity the rule belongs to
(Realm or Call Agent). This means that the real key used to index the corresponding measurement is a compound
of the indexing key and the entity. If, however, the key is declared to be global (by checking the “Is global key”
option), the index is solely determined by the key entered in the “Key attribute“ field. This means that if the same
indexing key is used in another rule block (for example for another Realm or Call Agent), the limit will be applied
jointly for calls on which this other rule block applies.

The traffic limiting actions also generate events when traffic does violate the limits. This is important for admin-
istrators to be able to notice such conditions and consider how to deal with such violations further: Whether to
recognize these as illegitimate and continue blocking the originators, or to lift the limits if they find the above-limit
usage has a legitimate reason. Only one event is produced for a detected excess of traffic limit, regardless of its
duration. However, if the excess calms down and emerges again after ten seconds, a new event will be generated.

To make sure that an administrator can be alarmed even before a limit hits and starts to drop traffic, some of the
traffic limit actions have the “soft-limit” option that creates diagnostic notice alarms but does not drop any traffic.
Also, in the case that the traffic violates the “hard” limit repeatedly, the option “Report abuse” allows to block the
offending traffic source – see Section Automatic IP Address Blocking for additional information.

The following call limit actions are available for use in A- and C-rules:

• Limit parallel calls - Set limit for number of parallel calls. New calls arriving in excess of this limit will be
declined using the 403 SIP response. To make it easier to find the cause, the response includes a Warning
header field with an additional hint: Warning: Caps limit reached. For example, to limit the number of
parallel calls from the ABC SBC to a Realm or Call Agent, add a Limit parallel calls action to its outbound
rules. Incomplete call attempt in progress whose context resides in memory also count temporarily towards
the limit together with established call. That’s an important security aspects: it makes sure new calls in
progress are declined and cannot establish calls later that would exceed the limit. To limit the number of
parallel calls from a Realm to the FRAFOS ABC SBC, add a Limit parallel calls action to the Realm’s
inbound rules. The action includes the following parameters:

– Limit parallel calls – the actual number of parallel calls permitted.

– Key Attribute and Is Global Key optionally define which partition of traffic counts towards the limit.

13.2. Police: Devising Security Rules in the ABC SBC 230

FRAFOS ABC SBC User Guide, Release 5.5.2

– SIP response code and SIP response reason specify what type of reply is sent in response to a request
that violated the limit. Optionally, header fields such as Warning may be added to the response using
the SIP Header option. This option is intended to provide upstream client and troubleshooters with
additional information explaining why a request is

– Soft-limit value allows to specify the “soft” threshold which if exceeded will generate a diagnostic
event.

– Report abuse checkbox makes occurrence of a traffic limit violation count against automated IP address
blocking score.

– SIP response code and SIP response reason specify what type of reply is sent in response to a request
that violated the limit. Optionally, header fields such as Warning may be added to the response using
the SIP Header option. This option is intended to provide upstream client and troubleshooters with
additional information explaining why a request is

• Limit CAPS - Set limit for SIP request rate. If the request rate exceeds this limit, new call attempts will be
declined using a 403 SIP response. Note that when a request is authenticated using SIP digest, it results in
two transactions, both of which count towards the CAPS limit. New dialog-initiating (e.g. SUBSCRIBE) and
out-of-dialog (e.g. unsolicited NOTIFY) requests also count against the CAPS limit and will be dropped if
they exceed it. SIP requests belonging to a dialog that has previously passed the limit test will all be accepted.
Retransmissions do not count towards the SIP limit. The action includes the following parameters:

– Limit CAPS – the number of permitted SIP requests per unit of time. These two values define the
permitted signaling rate.

– Time Unit – length of time unit in second. Even if the number of permitted requests grows propor-
tionally with length of time unit and yields the same signaling rate limit, longer time units are more
permissive as they can accommodate more intense bursts.

– Key Attribute and Is Global Key optionally define which partition of traffic counts towards the limit.

– SIP response code and SIP response reason specify what type of reply is sent in response to a request
that violated the limit. Optionally, header fields such as Warning may be added to the response using
the SIP Header option. This option is intended to provide upstream client and troubleshooters with
additional information explaining why a request is being dropped.

– Soft-limit value allows to specify the “soft” threshold which if exceeded will generate a diagnostic
event.

– Report abuse checkbox makes occurrence of a traffic limit violation count against automated IP address
blocking score.

• Limit Bandwidth (kbps) - Set bandwidth admission limit for codecs. If current total sum of maximum
bandwidth as signaled in SDP exceeds this limit, the signaling request will be rejected using a 403. For
example, the limit of 30 kbps will reject any incoming INVITE that, among others, offers G.711 codec (64
kbps) in its SDP using a SIP 403 response. This type of limit only serves as initial admission control and
does not guard the actual RTP usage. A sender is not hindered to send more RTP traffic than advertised in
SDP unless the Limit Bandwidth per Call action is applied.

The action includes the following parameters:

– Limit Bandwidth (kbps) – maximum permitted bandwidth

– Key Attribute and Is Global Key optionally define which partition of traffic counts towards the limit.

– SIP response code and SIP response reason specify what type of reply is sent in response to a request
that violated the limit. Optionally, header fields such as Warning may be added to the response using
the SIP Header option. This option is intended to provide upstream client and troubleshooters with
additional information explaining why a request is being dropped.

– Soft-limit value allows to specify the “soft” threshold which if exceeded will generate a diagnostic
event.

– Report abuse checkbox makes occurrence of a traffic limit violation count against automated IP address
blocking score.

13.2. Police: Devising Security Rules in the ABC SBC 231

FRAFOS ABC SBC User Guide, Release 5.5.2

• Limit Bandwidth per Call (kbps) - Set limit for RTP traffic per call. This action observes all RTP streams,
video and audio, of a call, and if the actual traffic rate exceeds the limit, the RTP packets will be dropped.
This action has the only parameter, the threshold value in kbps. RTCP traffic is not counted against the
bandwidth limit and this bandwidth limit is only effective if RTP anchoring is enabled for the call. The limit
includes RTP packets including RTP headers and excludes lower layer overhead (UDP,IP). For example for
g.711 that makes 68.69 kbps (64kbps codec, 4.69 kbps RTP) and excludes 10.91 kbps overhead (3.13 RTP,
7.81 IP). For GSM the audio and RTP bandwidth is 17.69 (13 kbps GSM, 4.69 RTP), IP and UDP overhead
is 10.94 kbps.

Note that limits are only applied to SIP requests that encounter the respective limit rule. That means that a newly
introduced limit does not affect established calls. It also means that if call processing is stopped due to declining or
dropping the call before the limit rule is evaluated, the declined call attempt doesn’t towards the limit. Example of
such rules where calls are declined before counted against a CAPS limit is shown in Figure Order of Rules Matters:
Dropped Calls Don’t Count Towards Limits.

Fig. 20: Order of Rules Matters: Dropped Calls Don’t Count Towards Limits

The most delicate part when setting the limits is finding the appropriate threshold values. Definition of appropriate
values depends on what type of SIP User Agents are being used and how. Specific aspects causing higher traffic
rates need to be considered to make sure that legitimate traffic will not be discarded:

• soft-clients often support SIP for presence (RFC3856). The amount of traffic, especially when such a client
starts, can be high and grow with the length of the buddy list.

• Registration throttling (Section Registrar off-load) is often used to keep NAT bindings alive. The limit rate
needs to be adjusted to the throttling rate.

• PBXs and Integrated Access Devices and most importantly trunking peers send traffic for many users from
a single IP address.

Traffic Limiting and Shaping by Example

In the following example we implement a policy to shape incoming traffic for a public SIP service for personal use.
The example is intended to be rather liberal and sets the threshold relatively high for the anticipated use to make
sure it doesn’t break some traffic-intensive use-cases.

We start policing VoIP calls in the first rule. To make sure that even a nervous caller attempting to reach a busy
destination doesn’t exceed his limits, we permit 10 requests every 30 seconds for every source IP address (the “$i” in
the key parameter). Note that the actual number of call attempts may be lower by one half, since SIP authentication
attempts preceding the actual call attempts count towards the limit as well and double the number of requests.

The next rule throttles registrations. We know that several popular consumer Integrated Access Devices (IADs)
offer several SIP accounts. We want to make sure that the devices don’t get locked out when they boot and send
REGISTERs for all of their SIP accounts. We also need to account for the authenticating transactions. Therefore
we set the limit to 10 requests every thirty seconds and key the limit by combination of IP address and From URI.
That means that the limit can only be exceeded by requests coming from the same IP address and bearing the same

13.2. Police: Devising Security Rules in the ABC SBC 232

FRAFOS ABC SBC User Guide, Release 5.5.2

From URI. In other words, even if many REGISTERs come from behind a single IP address the limit will only
be hit if they use the same URI. If the URI is registered from an IP address at a rate beyond the limit, parallel
registrations of the same URI from behind a different IP address will not count towards the same limit.

Further we impose a general limit on all SIP transaction types. Especially soft-phones are known to send a lot of
“noise”: SIP PUBLISHes, SUBCRIBEs, NOTIFYs, OPTIONS and other request types. We permit 28 requests
every three seconds from every single IP address.

Last but not least: we limit the number of parallel calls to 5 per IP address.

Fig. 21: Limit on number of Call Attempts per Second

Bandwidth limits by example

The ABC SBC can limit the bandwidth admitted for a calls’ media streams. The action Limit Bandwidth (kbps)
has as a parameter the bandwidth in kilobits per second to which the call should be limited, see Fig. Example of
Shaping Rules. Attempts to set up calls exceeding this bandwidth will be rejected using a 403 response.

Fig. 22: Example of Shaping Rules

13.2. Police: Devising Security Rules in the ABC SBC 233

FRAFOS ABC SBC User Guide, Release 5.5.2

13.2.6 Call Duration Control

By limiting the maximum duration of calls one can on the one hand prevent “bill shocks” when some customer
fails to terminate a call in a proper manner. Additionally, attackers might try to deplete the resources of the SBC
by generating calls with long durations causing a saturation of the call processing capacity of the SBC.

Setting Call Length Limits

The Set call timer action sets the maximum duration of the call, in seconds. If a call exceeds this limit, the ABC
SBC sends a BYE to both call participants and generates an event of the call-end type.

Fig. 23: Set call length

If this action is executed several times, the call duration will be the lowest call timer set, regardless of the order in
which the actions are executed.

Controlling SIP Session Timers (SST)

SIP Session Timers (SST) is a mechanism defined in RFC 4028 that can be used to make sure that calls are ended
after a period of time even if one endpoint disappeared without properly terminating the call. This is especially
important if calls are billed using data derived from the signaling messages, but also makes sure that unused
resources are released properly. In order to achieve this, periodically a refresh of the SIP dialog is done by using
a re-INVITE or an UPDATE. If the refresh request fails, e.g. if it times out, per the standard SIP mechanisms the
dialog is torn down and related resources are released.

Note that the session refresh, i.e. the re-INVITE or UPDATE that is done here, is a normal re-INVITE or a normal
UPDATE, so all the normal rules regarding the re-negotiating of the session apply. For example, a re-INVITE which
is triggered by Session Timers may modify the session by selecting another codec or other codec parameters.

SIP Session Timers is a mechanism to negotiate which of the endpoints in the SIP dialog does this refresh. After
the negotiation that happen with some specific headers (Session-Expires/x,Min-SE) in the INVITE or UPDATE
and the responses to it, it is clear who has the refresher role.

Unless explicitly configured otherwise, the negotiation is conducted directly between the caller and the callee, with
the ABC SBC merely passing SST-related information between the two call legs. However, if necessary, the ABC
SBC can take control of the negotiation.

The ABC SBC supports SIP Session Timers even if one or both endpoints do not have support for Session Timers.

There are separate actions for enabling SST on the caller and the callee leg

• Enable SIP Session Timers (SST) - caller leg

• Enable SIP Session Timers (SST) - callee leg

The remote UA may leave it open who should be the refresher (by not including a refresher=uac or refresher=uas
parameter in the Session-Expires/x header). In this case the ABC SBC has the possibility to select whether the
ABC SBC should take on the refresher role or the remote UA should do it. This can be selected by the ‘let remote
refresh’ option. It may be safer to do the refresh from the ABC SBC, as some UAs do not perform the refresh
properly, even if they have said they would do it. On the other hand, if NATs are involved, there is no keepalive and
the refresh interval chosen is too long, only the remote UA which is behind the NAT may be able to do the refresh
thus reopening the NAT, in which case it may be safer to let the remote UA do it.

The SST mechanism also negotiates the time after which the refresh is done. The timer parameters - proposed
Session Expiration and Minimum Expiration, in seconds - can be set individually for each leg.

13.2. Police: Devising Security Rules in the ABC SBC 234

https://datatracker.ietf.org/doc/html/rfc4028.html

FRAFOS ABC SBC User Guide, Release 5.5.2

Setting RTP Inactivity Timer and Keepalive Timer

These two timers help to detect situations in which due to some network failure a phone call has already stopped.
It requires media anchoring to be enabled.

It often occurs that a call party becomes suddenly unavailable and a call remains “hanging”. This may happen
for example due to a software error in a softclient or a disconnected IP network. To make sure such a call doesn’t
continue, an RTP inactivity timer may be configured. If configured and either party stops sending RTP, a call is
discontinued by the ABC SBC after the preconfigured period of inactivity. Eventually an event of type “call-end”
is reported with originator field set to “rtp-timer-terminated”.

The timer can be configured under “Config → Global Config → RTP handling → RTP timeout”. If set to zero, the
timer is deactivated.

To make sure that a peering SIP device using a similar kind of timer doesn’t disconnect a call which just occurs
to produce no media (voice inactivity detection, on-hold), the ABC SBC may also be configured to generate RTP
keep-alive packets. If set to a non-zero value (in seconds), the ABC SBC sends keep-alive RTP packets periodically.

This timer can be configured under “Config → Global Config → RTP handling → RTP keep-alive frequency”.

Both timers can be also set on a call-by-call basis under parameters of media anchoring (see Section Media An-
choring (RTP Relay)).

13.3 Collect Events: Gathering Usage Data in the ABC Monitor

Knowledge is never too dear. Sir Francis Walsingham, Queen Elizabeth’s Principal Secretary

An administrator can only craft reasonable security policies if he knows what is actually going on. He must have
access to detailed history of SIP user behavior, security incidents and unusual activities. This is indeed the purpose
of “events”. Events are detailed reports on user activity that encompass registration, call attempts, and security
incidents.

Many individual events can identify need for administrator’s attention. For example if a packet is dropped because
it is coming from a SIP scanning software, an administrator may want to act and ban the source IP address.

Some events in isolation may alone not indicate a threat and need to be monitored by their quantity and trend. For
example, an isolated authentication failure can be caused by a password typo during SIP authentication process.
However if many such occur in series, chances stand high it is some kind of password-guessing attack. Being able
to recognize such repetition allows the ABC SBC to act automatically and even ban offending traffic without the
human administrator’s intervention. (see Section Automatic IP Address Blocking).

Most of the events are always produced by the ABC SBC, and administrators don’t need any extra action to enable
them. They just need to be able to understand and analyze them.

The rest of this Section is concerned with the cases when reporting events is optional and needs to be turned on
explicitly to alert on possible departures from a SIP site’s policy.

13.3.1 Reporting Security Events

As security events failures are reported when a particular administrator-defined policy is being enforced. The only
exception is an authentication failure which is always considered a security threat.

The events are reported only if corresponding actions are executed and proper parameters are set. Therefore it is
the rule conditions that primarily determine when to trigger an event.

The following table summarizes how rules must be set up in order to generate proper events. All shaping actions
report limit violations if event reporting is enabled. So does the drop action when executed on an incoming SIP
request, and log-reply when a request is rejected downstream.

Particularly the log-reply action is important as in some cases the downstream SIP elements may know better than
the ABC SBC that a request is illegitimate. This is for example the case in a scanning attack when an attacker
attempts to probe all possible SIP addresses. The ABC SBC is unaware of individual users and is not in position to

13.3. Collect Events: Gathering Usage Data in the ABC Monitor 235

FRAFOS ABC SBC User Guide, Release 5.5.2

repel such an attack straight off. However the downstream server knows subscriber details and can reveal by proper
SIP response codes that the requests are for invalid destinations. It may respond back with 604 for non-existing
users or 403 for forbidden addresses. This way the ABC SBC can infer from the response codes received from
downstream that the upstream request originator should be better blocked.

Event Type Required Action Required Parameter Additional Information
limit Limit parallel calls Report Abuse Traffic Limiting and Shap-

ing
limit Limit CAPS Report Abuse Traffic Limiting and Shap-

ing
limit Limit Bandwidth Report Abuse Traffic Limiting and Shap-

ing
limit Limit Bandwidth per

Call
none Traffic Limiting and Shap-

ing
message-
dropped

drop Blacklist by firewall if re-
peated

Manual SIP Traffic Block-
ing

log- reply Log message for replies Log to Firewall blacklist

13.3.2 Setting up Diagnostic Events

Diagnostic events are also of great importance to the process of continuous refinement of security policies and
bridging the gap between liberal and strict policies. A too liberal policy may lead to exposure of a security gap.
On the other hand a too strict policy that filters all unknown SIP elements is likely to break some SIP features.
Diagnostic events allow to strike a compromise, in which a policy remains open and diagnostic events report on
suspicious traffic patterns. An administrator can then inspect these in details and choose whether they are legitimate
and can be preserved, or whether they shall be better banned.

An example of such policy is reporting on call from unregistered users (see Figure Rule Example: Report Calls of
Unregistered Users). If an administrator feels uncertain whether such calls are legitimate or not, he may initially
just observe them. To do so, he places log-action in an appropriate condition and then watches the reported events.
These include detailed information about the calls in question and provide the administrator with insights needed
for further refinement of his policies. He may for example find out that the call attempts are coming from a peering
domain and are perfectly legitimate. Or he may find that they have no traceable originator and should be better
blocked.

The following table lists actions that can be used to provide customized reports on observed activities. The shaping
actions can include an additional lower limit to report on high traffic before the “hard limit” is hit and traffic begins
to be declined. The action-log can report on any conditions identified in the ABC rules: unexpected URIs, traffic
from unregistered users, and anything else that can be captured by conditions specified in Section Condition Types.
The message-log event is used analogously, in addition to the event details it also collects the actual traffic that
triggered the event.

13.3. Collect Events: Gathering Usage Data in the ABC Monitor 236

FRAFOS ABC SBC User Guide, Release 5.5.2

Event Type Required Action Required Parameter Additional Information
limit Limit parallel calls Soft Limit Traffic Limiting and

Shaping
limit Limit CAPS Soft Limit Traffic Limiting and

Shaping
limit Limit Bandwidth Soft Limit Traffic Limiting and

Shaping
limit Limit Bandwidth per Call none Traffic Limiting and

Shaping
action- log Log Event none
log- reply

Log message for
replies

Log as Event

message- log
Log received

traffic

none

13.4 Practices for Devising Secure Rule-basis

While we have shown in previous sections how to police traffic, collect diagnostics information and analyze it there
is still a remaining question: how to put all of this together in a consistent configuration using the ABC SBC rules.
The way the rules are compiled can have significant impact on the logic of the service.

When devising the rule-base, the following important choices must be made:

• Whether to use Media Control or not. Relaying media (Section Media Anchoring (RTP Relay)) provides
the ABC SBC with more control and insight into calls at the price of performance and media latency. Also it
is a necessity when NAT traversal (NAT Traversal) needs to be implemented, IP addresses of infrastructural
elements behind an ABC SBC need to be hidden, transcoding (Section Transcoding) or RTP-to-SRTP con-
version (Section RTP and SRTP Interworking) is needed. If used, which is nowadays the default choice, the
latency impact can be mitigated by geographic dispersion (see Section Introducing Geographic Dispersion
for more information on what difference geographic distribution makes in a cloud environment).

• Whether to use Topology Hiding or not. Topology Hiding obfuscates signaling so that it is hard for an
external party to find IP addresses of the infrastructural elements behind the ABC SBC . We are describing
the rules to be used for topology hiding in the Section Topology Hiding. Note that obfuscation of SIP traffic
may make its analysis quite difficult. If used tracing of traffic using ABC Monitor is recommended.

• How to organize policing rules. A reasonable practice is to start with rules that identify and instantly drop
undesired signaling traffic before “heavier-processing” rules, such as media control or database queries begin.
We show our recommendations in the Section Devising a secure rule-base.

13.4.1 Topology Hiding

Some service providers are worried about disclosing IP addresses of their infrastructure to third parties, attackers
and competitors. Unfortunately the SIP protocol does such a disclosure in a grand style: SDP payload shows
IP addresses from/which media is sent, Contact header-field shows the IP address of an end-point, and so does
pre-RFC3261 Call-ID header-field. Via, Route and Record-Route header-field disclose the path of a SIP message
exchange. Other standardized and / or proprietary header fields can also carry IP addresses.

Therefore service providers concerned about such disclosures prefer obfuscation of the respective SIP message
elements. It needs to be pointed out though, that what makes life harder for attackers makes it similar hard or even
harder for service operators. Correlating messages with each other for sake of troubleshooting is much harder when
they are modified.

13.4. Practices for Devising Secure Rule-basis 237

FRAFOS ABC SBC User Guide, Release 5.5.2

In the following subsections, we will review the default topology hiding behavior and how to make it more trans-
parent or more obfuscated.

Default Address Hiding

The default configuration of the ABC SBC tries to strike a good balance between the two extremes, full disclosure
and full obfuscation. Already the back-to-back user-agent (B2BUA) design of the ABC SBC contributes signif-
icantly. The whole SIP path, as disclosed in Via, Route, and Record-Route header fields is split in two call-legs,
each of them terminated by the ABC SBC. As result, each SIP dialog party sees the SBC as its peer in these Header
fields. Additionally the ABC SBC by default rewrites dialog information (the triple Call-ID, From-tag, To-tag) so
that IP address present in pre-RFC3261 implementations Call-ID is obfuscated.

If more signaling transparency is need than this default behavior implements, transparent dialog ID can be enabled
by an action as shown in the next Section. Also in some rare scenarios, the downstream elements in the SIP path
may need to inspect the Via stack for the upstream leg. The ABC SBC reintroduces it when the following action
is enabled:

Show Via

Transparent and Non-Transparent Dialog ID

The other concern is Call-ID – old-fashion SIP implementations pre-dating RFC3261 followed the RFC2543 spec-
ification and disclosed its address in Call-ID header-field. To make sure that the addresses do not get disclosed
through this header-field when out-of-dialog or dialog-initiating requests are created by an elderly SIP User Agent,
the ABC SBC can replace the Call-ID values with obfuscated values.

The choice whether to do is is administrator’s. By default the ABC SBC does change the Call-ID Header Field
value.

We recommend that administrators consider preserving the Call-ID for sake of troubleshooting. Leaving it un-
changed makes correlation of incoming and outgoing SIP messages significantly easier. Enabling it is easy, what
needs to be done is to place the following action in a Call Agent’s or Realm’s rules:

Enable transparent dialog IDs
Another advantage is that some non-standardized SIP extensions may want to take reference to a Call-ID value
which becomes invalid once the ABC SBC changes it.

Hiding Addresses in Well-known SIP header-fields

When an operator is indeed concerned about disclosing internals of a Call Agent, the very step is to make sure
that occurrences of the Call Agent’s address in well-known header-fields are replaced with ABC SBC ‘s. Doing
that is as simple as turning the Topology Hiding checkbox on under Call Agent’s attributes. Once enabled all the
following header fields will be rewritten accordingly:

• P-Asserted-Identity (RFC 3325)

• P-Preferred-Identity (RFC 3325)

• Diversion (RFC 5806)

• History-Info (RFC 4244)

• Remote-Party-ID (proprietary pre-3325)

• Call-Info (RFC 3261)

• Warning (RFC 3261)

Note that if the Warning header field is obfuscated, it is denoted using an additional ;topoh parameter. This makes
it clear that the address in the header-field is not genuine – otherwise a troubleshooter may be misled.

13.4. Practices for Devising Secure Rule-basis 238

https://datatracker.ietf.org/doc/html/rfc3325.html
https://datatracker.ietf.org/doc/html/rfc3325.html
https://datatracker.ietf.org/doc/html/rfc5806.html
https://datatracker.ietf.org/doc/html/rfc4244.html
https://datatracker.ietf.org/doc/html/rfc3261.html
https://datatracker.ietf.org/doc/html/rfc3261.html

FRAFOS ABC SBC User Guide, Release 5.5.2

Hiding Contact Header in REGISTER

The Contact header is by default obfuscated by the SBC in all dialog-initiation transactions. Contact header field
in REGISTER requests remains however untouched. If obfuscation is desirable, ABC SBC’s register cache must
be used that replaces the original Contacts with aliases.

The Section Registration Caching and Handling provides details about configuring registrar cache. This may be a
reasonable option to be turned on alone for its “shock absorbing” and “NAT keep-alive” capabilities.

Hiding All Other Header Fields

Additional header-fields, standardized (Service Route RFC 3608) or proprietary, may appear and convey IP ad-
dresses. The ABC SBC only obfuscates the documented header-fields and doesn’t interfere with others. If other
header-fields are present and disclosure of IP address is a concern, the administrator can remove them at the risk of
affecting the purpose they are serving. He can either remove the specific header-fields or use header field whitelist,
i.e. remove all but well-known header-fields. SIP manipulation is described in detail in the section SIP Mediation,
of particular interest is the action set header whitelist.

Concealing Media

Similarly like with SIP, the ABC SBC can put itself in the middle of the path and present itself to each call as its
peer while hiding the other party. If the ABC SBC doesn’t do it, IP address used for sending/receiving media will
be seen in SDP and in the actual RTP packets.

To conceal the media sender/receiver, the following action must be enabled:

Enable RTP anchoring
The downside is that all media visits the ABC SBC, while increasing media latency and bandwidth imposed on
the server. A detailed discussion can be found in the Section Media Handling .

Preventing SIP Digest Leak:

In order to effectively prevent malicious UAs from requesting a SIP Basic Authentication Digest from another UA
with which a call has been established, it is necessary to take some measures to prevent authentication requests to
be forwarded to UAs from other UAs that should not send any authentication requests.

For Call-Agents facing single end-user UAs, a simple method can be used to effectively block these authentication
requests: 2 UAC auth actions are configured in the A-rules of the Call-Agent facing the end-user UAs (one toward
“caller”, and one toward “callee”). These actions shall be configured with a bogus username and password which
will be used to reply the authentication requests from the malicious UA.

For Call-Agents representing a trunk line, a simple header blacklist / whitelist can be used to effectively filter out
the following header fields:

• Proxy-Authenticate

• WWW-Authenticate

13.4. Practices for Devising Secure Rule-basis 239

https://datatracker.ietf.org/doc/html/rfc3608.html

FRAFOS ABC SBC User Guide, Release 5.5.2

Preventing Resource Exhaustion Attacks:

To effectively prevent the SBC from being subject to resource exhaustion attacks (flooding based) but also from
high traffic peaks, it is necessary to configure so called Server Transaction limits (see Server Transaction limits).

13.4.2 Devising a secure rule-base

Developing a reasonable security policy may be a delicate task for a SIP service administrator. A too strict policy
may too easily “throw the baby out with the bathwater” and impair legitimate traffic. The other extreme, a too
liberal policy, may be too inviting for an attacker. Finding the right balance between serving users and protecting
them from attackers requires understanding of the service goals and risks and drawing a balance between them.

The policy represented by the ABC rules also has performance implications associated with it. Some rules, such
as database lookups, have higher latency and lower throughput than others.

We therefore suggest that policies are crafted in order of increasing complexity, starting with rules that instantly
reply certain requests and continue to more complex rules. Basically, all undesirable SIP messages should be
eliminated by rules in the initial rule-base part before processing for the accepted messages starts in the other part.
The following subsections show examples of such rules in such order.

Shaping the Signaling Rate

It makes sense to begin processing with a check against SIP rate limits. Placing the check in the very beginning
makes sure that all incoming SIP requests are checked against these limits including requests that are dropped by
rules.

In Figure Rule Example: CAPS Shaping we are showing a simple rule example for sake of this Section. The rule
checks all incoming SIP messages against a request rate and declines messages in excess of the limit.

Fig. 24: Rule Example: CAPS Shaping

More sophisticated examples for shaping rules have been given in Figure Limit on number of Call Attempts per
Second in Section Traffic Limiting and Shaping by Example.

Instant Responses

Many requests come that do not require any sophisticated decision making: the right action is just to send a reply
instantly. The reply can be positive or negative. Positive replies are typically sent in answer to some SIP User
Agents’ SIP-layer NAT keep-alives. Negative answers are sent when requests request some unsupported service,
do not comply to some local URI conventions, or come from a User Agent type known to malfunction.

The following rule examples show both cases: positive reply (Figure Rule Example: Confirming SIP Keep-alives)
for keep-alive messages and negative replies to decline a request for unsupported Message Waiting Indication server
(Figure Rule Example: Declining an MWI Request).

13.4. Practices for Devising Secure Rule-basis 240

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 25: Rule Example: Confirming SIP Keep-alives

Fig. 26: Rule Example: Declining an MWI Request

Dropping

With SIP requests who appear a security threat, dropping them silently is a safer choice than declining them. The
less information an attacker gets, the harder it is for him to find a security gap in a SIP service. If an IP address is
sending clearly offending traffic, it may even make sense to ban it entirely.

A typical reason for deploying such a restrictive rule is elimination of SIP scanner traffic. SIP scanners are auto-
mated tools that probe Internet address space to see if there are some SIP services running. Such tools are even
publicly available1. When such a tool finds a responsive SIP service, it continues looking for legitimate SIP ad-
dresses and it may even proceed to mounting a password-guessing attack. Such attacks are real: Once you start a
SIP service on the public Internet, it takes no longer than few hours until the first scanning packets arrive. Note
however that filtering such traffic is only eliminating naively crafted attacks that advertise themselves as such. More
sophisticated attacks will certainly not do it and must be detected and repelled using other methods such as traffic
shaping.

Fig. 27: Rule Example: Eliminating Traffic from SIP Scanners

The rule has an important option turned on: “Blacklist by firewall if repeated”. That means if the offending traffic
appears repeatedly, the originator’s IP address will be blacklisted.

Database Checks

By now, we have eliminated most of the unwanted traffic: we have declined excessive traffic, gracefully handled
SIP-layer keep-alives, declined politely messages for unavailable services and dropped obvious security threats.
The remaining traffic has been reduced to a level where we can deploy more expansive policy checks and dig
in database. Often there are offending users identified by their URIs. A straight-forward way to eliminate their
traffic is to provision a list of such users and block SIP traffic if it comes from such users. Figure Rule Example:
Prohibited URIs shows a rule that looks up SIP requests From URI in such a table and if the URI is found, drops
the request silently.

1 SIP Vicious: https://github.com/sandrogauci/sipvicious

13.4. Practices for Devising Secure Rule-basis 241

https://github.com/sandrogauci/sipvicious

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 28: Rule Example: Prohibited URIs

More Limits

We may also want to constrain the number of parallel calls. We didn’t place such a limit in beginning of our rule-
set. The reason is that too many call attempts are rejected in the initial part of rule-set and count towards the limit
too. When we place the parallel call limit in the rule-base after all unwanted traffic is rejected, the call attempts we
chose to decline won’t count towards the limit.

Figure Rule Example: Limit Parallel Calls shows rule for enforcement of maximum five parallel calls per single IP
address. Also note that in this rule, no soft-limit warning is enabled and limit violations add to the security score
computed by automated blocking (Section Automatic IP Address Blocking).

Fig. 29: Rule Example: Limit Parallel Calls

Diagnostic Events

Often SIP messages do appear whose purpose is not entirely clear. Devising a policy that drops them may be
premature – they may have some legitimate use which the administrator doesn’t understand. It is therefore a good
practice to observe them before considering a policy adjustment. This moment of rule processing is perfectly right
for this purpose: all traffic that shall be dropped is dropped already.

Example of such is shown in Figure Rule Example: Report Calls of Unregistered Users. This rule reports on all
non-REGISTER requests for users who have not registered previously. This may be perfectly reasonable for a
peering trunk and quite suspicious for a residential user. Gathering these diagnostic events puts an administrator
in position to analyze the traffic and create well-targeted policies.

Fig. 30: Rule Example: Report Calls of Unregistered Users

13.4. Practices for Devising Secure Rule-basis 242

FRAFOS ABC SBC User Guide, Release 5.5.2

Processing Legitimate Traffic

At this stage of rule processing we have eliminated well-known offending traffic and reported on suspicious traffic.
It is time to devise rules that process the traffic considered legitimate: mediation rules, media processing rules,
topology hiding, etc. The most important fact for sake of this Section is placement of these rules: they are placed
in the very end of a rule-base after all other checks have eliminated unwanted traffic.

Figure Rule Example: Processing Legitimate Traffic shows such rules: they implement registration caching and
media anchoring to facilitate NAT traversal and off-load the infrastructure behind the ABC SBC . These two rules
also contribute to topology hiding: use of media relay hides the actual RTP receivers and registration caching hides
the registered contacts.

Fig. 31: Rule Example: Processing Legitimate Traffic

13.4. Practices for Devising Secure Rule-basis 243

Chapter 14

Preview of Experimental Features

This chapter summarizes features that are scheduled to appear in future releases and may, under circumstances,
become available earlier in experimental releases. The availability, maturity and scope of the features is subject
to change without prior notice. Consult FRAFOS professional services if you wish to inquiry about use of these
features.

14.1 Using Two-Factor Authentication for Users

Two-factor authentication (2FA) is a new experimental feature that helps to preserve security of a whole VoIP
system even when security of a component is compromised. What sometimes happens is that PBX passwords leak
in various ways and stolen passwords are used to make fraudulent calls that appear legitimate. The 2FA system
allows to manage “shadow passwords” for SIP users. If a user’s account begins to show irregular patterns, identity
of the user can be verified using this shadow password. The shadow password is a short string of digits (PIN) which
is stored internally at the SBC in parallel to user’s SIP credentials.

The system works as follows. On his or her first attempt to make a call, a user is challenged to enroll by submitting
a PIN code using DTMF. The user must remember the PIN code for future verification. Subsequent calls work
as normally as long as the status of the user doesn’t change. The status can be changed manually from “ok” to
“soft-limit” by the administrator or an automated tool such as the FRAFOS ABC Monitor. When a user attempts
to initiate a call in the “soft-limit” status, he will be challenged to prove his identity using his PIN code. If the user
fails to submit the proper PIN code, his status will change to “hard-limit” and further calls will be blocked using
an announcement. Otherwise the verification timestamp will be stored and the user will not be prompted anymore
for some convenience period of time.

This basic scenario documented below is programmed using ABC rules and can be adjusted to the needs of a
specific scenario.

14.1.1 Prerequisites

For the system to work, the following preparations must be made:

• the ABC SBC must be up and running in cloud configuration with a designated configuration master. This
allows changes of user status to propagate to all attached SBCs.

• An administrative account and password must be known for use by SBC to manipulate the user status. Ideally
a special user is created for this purpose using “System → Users → Create User“ . In our examples below,
we are assuming a user rpcuser with password rpcrpc.

• the PIN database must be created. To create the database, use “Tables → Add New Table“ on the configu-
ration master. Make sure you choose 2FA as the table type.

244

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 1: Two factor authentication: Add a New PIN Table

• a system is required to manipulate user status. This can be done manually by editing the provisioned table, or
by this-party tools using XML-RPC, or by deploying an extension to FRAFOS ABC Monitor. An example
of XML-RPC use is shown below.

#!/usr/bin/python
(continues on next page)

14.1. Using Two-Factor Authentication for Users 245

FRAFOS ABC SBC User Guide, Release 5.5.2

(continued from previous page)

import xmlrpclib
import ssl
if hasattr(ssl, '_create_unverified_context'):
ssl._create_default_https_context = ssl._create_unverified_context

find IP address of config master: grep MASTER /data/sbc/etc/sbc-pullconf.conf
servernew = xmlrpclib.Server('https://rpcuser:rpcrpc@192.168.0.83:1443/rpc.php')
data = {"key_value":"sip:3@abc.com","status":"soft-limit","pin":"1111"};
print servernew.tables.insert_update_rule('twoFA',data);

• a loopback CA bound to a loopback interface must be setup. The 2FA is running on a loopback interface
so that multiple realms can use the same logic by forwarding traffic to loopback, and the 2FA logic doesn’t
interfere with the actual realms rules. The following screenshots show how to set up the signaling interface,
media interface and the actual CA. The interfaces must use systems physical “lo” interface. There must be
also a realm to which the CA belongs.

14.1. Using Two-Factor Authentication for Users 246

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 2: Loopback signaling interface for two factor authentication
14.1. Using Two-Factor Authentication for Users 247

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 3: Loopback media interface for two factor authentication

14.1. Using Two-Factor Authentication for Users 248

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 4: Loopback Call Agent

14.1. Using Two-Factor Authentication for Users 249

FRAFOS ABC SBC User Guide, Release 5.5.2

14.1.2 Rules for Two Factor Authentication Processing

As mentioned bellow, the actual rules for two factor authentication processing will be tied to a loopback interface.
This allows to share the rules for multiple Call Agents, in that the Call Agents forward relevant requests to the
loopback interface. This is achieved by rewriting userpart of request URI to indicate the desired action and rewriting
the hostpart to the loopback address 127.0.0.1.

The following screenshot shows how the loopback rules are formed. They assume that the user part of the request
URI indicates what shall be done with INVITEs for the caller. Whether this is a request from a new user who
needs to be enrolled, or a user whose status shall be verified, or a user whose request shall be rejected using a voice
announcement.

Fig. 5: Loopback Rules

There are two actions: Two factor authentication which guides an existing user through a verification dialog.
If the user types his proper PIN using DTMF, the action updates user’s verification timestamp and the user can
continue using the service without further disruptions.

The other action, Two factor auth-enrollment, prompts a user to submit his PIN. The PIN is then later used to
verify identity of the user.

The rule actions have a couple of parameters. The most important parameter is that of the RPC URI – this is the
address of the configuration master and legitimate username and password. Both actions update the PIN database
based on their completion status. The audio filenames can be changed for a different user experience. RESTful
URIs can be optionally used to notify external applications when a rule action finishes with success or failure.

The parameter “Source IP” can be used to set the remote IP address which is recorded with the two factor authen-
tication record in the database. As the processing is executed after being looped on a loopback interface, the real
remote IP may be passed on, e.g. by adding a header ‘P-ABC-Source-IP’ with the correct remote IP. That can be
used here with the value ‘$H(P-ABC-Source-IP)’.

14.1. Using Two-Factor Authentication for Users 250

FRAFOS ABC SBC User Guide, Release 5.5.2

14.1.3 Rules for determining User Status and discriminating by it

The more sophisticated part of the rules discriminates how to treat respective users. An example of such is shown
in the following screenshot.

The very first rule retrieves the user status from the current database. The table attributes, such as PIN and status,
are then available for processing as call variables.

The first condition selects users whose status is set to “hard-limit”. In that case, incoming INVITEs are forwarded
to the loopback interface with “reject” in userpart of request URI, and rejected from there.

The next rule targets users for whom no records are available. Their INVITEs are forwarded to loopback for
enrollment.

Subsequent conditions try to determine whether the user is in the soft-limit status, and how recently he has verified
his identity. If the last verification is too long ago (24 hours in this example), the INVITE is forwarded to the
loopback interface for PIN verification.

Fig. 6: User Discrimination in Two factor authentication Ruleset

If none of these conditions matched, the rule processing continues “as usual”. That’s the case when user status is
“ok” or if the user’s identity was verified recently.

14.1. Using Two-Factor Authentication for Users 251

FRAFOS ABC SBC User Guide, Release 5.5.2

14.1.4 Routing Rule to Connect Two Factor Authentication Processing and User
Discrimination

There is one remaining piece to connect the user discrimination and 2FA processing rules: a routing rule. The user
discrimination rules have already set the loopback address in request URI and defined a variable “goto_loopback”.
We still need to act upon these. This is fortunately easy to set up:

Fig. 7: Two Factor Authentication Routing Rule

14.1.5 Scenario Modifications

The two-factor authentication scenario can be modified in many different ways using the ABC rules. The period
for which a user doesn’t have to be re-validated may be extended or shortened. The IP address of a request can be
checked against the IP address from which the identify was verified the last time (last_verified_from_ip) – then a
successful verification only validates calls from the same IP address. The way calls from a user in hard-limit status
are declined can be changed. Note however, that the 2FA application is still in experimental status and untested
scenarios may or may not work as expected.

14.2 AWS: Reputation Lists

Monitor-steered firewalling allows to combine Monitor intelligence about misbehaving users and ABC SBC’s ca-
pability to filter out their traffic before it causes harm. It is based on the notion of reputation list and works as
follows: an ABC Monitor collects events from all associated SBCs as usual. It uses its data-streaming logic to
identify misbehaving traffic sources and posts such to a reputation list. SBCs are subscribed to the list, receive a
notification when a new IP address is published by the ABC Monitor, and block the source then.

Use of the ABC Monitor to decide which IP addresses to block is particularly advantageous for several reasons:

• the ABC Monitor collects big data about users and their behavior and is therefore in a very good position to
make sophisticated decisions which IP addresses should be blocked.

• the centralized nature of the ABC Monitor allows to convey problematic IP address to all managed SBCs as
soon as any of them detects them

• the ABC Monitor has a global view of multiple ABC SBC and can identify misbehaving traffic sources even
when they spread their traffic to remain low profile on each managed SBC but their total traffic is beyond a
critical mass.

Currently, the reputation list is facilitated using AWS Simple Notification Service (SNS). It is not necessary for the
ABC Monitor and ABC SBC to run on AWS but both must have access to AWS SNS service.

14.2. AWS: Reputation Lists 252

FRAFOS ABC SBC User Guide, Release 5.5.2

14.2.1 Setting Up ABC SBC for Use of Reputation List on AWS

Before you begin, the following prerequisites must be set up in AWS and in the ABC SBC configuration:

• In AWS, there must be an SNS topic, to which the Monitor is allowed to write and from which the ABC SBC
is allowed to read.

• AWS Identity must be properly configured on the ABC SBC under “Global Config → AWS”. Set AWS
region for the SNS, and key id and secret key for identity that can subscribe to the SNS topic. We recommend
that you set up a special IAM user with privileges limited to receiving SNSs for this purpose.

• On the ABC SBC, an XMI interface must be properly set up and run on an IP address reachable by SNS.
Private IP address not connected to AWS via a VPN will be unreachable for the notifications and the sub-
scription will fail. If the ABC SBC is running on AWS, the option “Public IP address autoconfig” must be
therefore set to “Amazon Method”.

• RESTful interface for processing notifications must be enabled on the XMI interface. To do so, choose the
XMI interface name under “Global Config → Misc → RESTful interface XMI name “. Make sure that
the port number under “Global Config → Misc → RESTful interface XMI port” is open in the SBC’s
security group.

To subscribe to the SNS, find “System → Firewall → Subscription to AWS Notification Service”, click “Sub-
scribe” and include the SNS topic’s ARN. After the subscription is successfully completed, the IP addresses
learned from the reputation list appear under “External FW blacklist”.

14.2.2 Setting Up ABC Monitor for Use of Reputation List on AWS

• In AWS, there must be an SNS topic, to which the Monitor is allowed to write and from which the ABC SBC
is allowed to read.

• ABC Monitor instance must be assigned a proper IAM role to publish SNS messages.

• ABC Monitor instance must be configured to post to the topic identified by its region and ARN. The settings
are under “Settings”. In this configuration section, it is also possible to set threshold for Exceeded Limits
that may eventually cause a source address to be published on a reputation list.

• The administrator must choose which type of Exceeded Limits will place a source address on the reputation
list. To do so turn on/off checkboxes under “SNS Settings”.

14.3 Server Transaction limits

The server transaction limits allows for limiting the number of running SIP server transactions (UAS transactions).
This mechanism, when properly configured, offers a very effective protection against burst of new transactions
typical for denial of service attacks as well as against resource exhaustion (mostly RAM) on sustained high SIP
traffic or flooding attacks.

These limits will allow the administrator to be warned (events are generated toward the ABC Monitor) when
certain limits are passed (soft limits) and limits to be enforced by rejecting new transactions (hard limits) with
503 Overloaded. In case requests are actively rejected, ABC Monitor events are sent as well.

14.3. Server Transaction limits 253

FRAFOS ABC SBC User Guide, Release 5.5.2

Fig. 8: Transaction limit flow diagram

The diagram above shows the behavior related to transaction limits when a new request (not a retransmission) is
received. The action taken on a limit breach depends on the type of limit (soft vs. hard limit), as described above.

It is important to note that the very same transaction counter is used to check both types of limits (in-dialog and
out-of-dialog), so that the in-dialog limits must necessarily be higher than the out-of-dialog limits. The difference
between both is the guaranteed number of in-dialog transactions that can be held.

Fig. 9: Transaction limit settings

The transaction limit settings can be found in the global config parameters, in the category “SEMS”.

14.3. Server Transaction limits 254

FRAFOS ABC SBC User Guide, Release 5.5.2

14.3.1 Setting proper limits

The easiest method for setting proper limits is to monitor the number of UAS transactions while the SBC is operating
under normal conditions with the ABC Monitor and to apply a factor of at least 2 to these numbers before setting
limits.

For any of the transaction limits fields, a value of 0 means that the limit is deactivated.

In order to start using the limits without impairing production traffic, the soft limits should be set first, together
with the event throttling to avoid generating too many events.

Once the soft limit give satisfactory results, meaning that events are generated only on significant load peak, the
hard limits can be with a safe margin (at least +30%).

The in-dialog limits should be set very carefully, as it impacts greatly the stability of the system. In particular, BYE
requests could be lost in case the in-dialog transaction limit is set improperly.

14.4 New restify CDR process

For information about the legacy behavior, please refer to Call Data Records (CDRs).

Since ABC SBC 4.5, the new CDR-ng feature may be enabled in Cluster Config Manager under Global config >
CDRs > Enable new version of CDRs (CDR-NG). The new process monitors event from a target redis list. If a
event type is matched with one from the watch list (call-end or conf-leave for example), a CDR is generated in a
CSV format. The CSV content is based on the event fields, in a format specific to the event type. The CDR is then
forwarded to a specific syslog facility.

14.4.1 CDRs Location

Please note that by default, syslog-ng is configured to redirect a process’s messages from a facility to a target file.
ABC SBC default configuration for CDR is the following :

Process Syslog facility Target file
restify-cdr LOCAL1 /data/cdr/cdrNG.log
restify-cdr LOCAL2 /data/cdr/cdrNGconf.log

14.4.2 CDRs configuration

The configuration file is located in /etc/frafos/restify-cdr.conf. By default :

• call-end, call-attempt and conf-leave event are watched

• call-end and call-attempt CDR are forwarded to the LOCAL1 facility

• conf-leave CDR are forwarded to the LOCAL2 facility

The following formats are defined by default :

• classic: 1-1 call CDRs (call-end, call-attempt)

• webconf : web conference based CDRs (conf-leave)

14.4. New restify CDR process 255

FRAFOS ABC SBC User Guide, Release 5.5.2

14.4.3 CDR Format

classic

• Source Realm (event field: src_rlm_name)

• Source Call Agent (event field: src_ca_name)

• Destination Realm (event field: dst_rlm_name)

• Destination Call Agent (event field: dst_ca_name)

• From user part (event field: caller_user)

• From host part (event field: caller_host)

• From name part (event field: caller_name)

• To user part (event field: callee_user)

• To host part (event field: callee_host)

• To name part (event field: callee_name)

• Local tag (ID for call) (event field: id)

• Timestamp when the call was initiated (format - 2012-05-04 02:22:01) (event field: start_tm)

• Timestamp when the call was connected (format as above) (event field: connect_tm)

• End Timestamp of the call (format as above) (event field: end_tm)

• Duration from start to end (sec.ms) (event field: duration)

• Duration from start to connect/end (for established/failed call; sec.ms) (event field: setup_duration)

• Duration from connect to end (for established call; sec.ms) (event field: bill_duration)

• SIP R-URI (event field: sip_req_uri) note: the field differ from the original CDR

• SIP From URI (event field: sip_from_uri)

• SIP To URI (event field: sip_to_uri)

webconf

• Conference identifier (event field: conf_id)

• Participant identifier (event field: participant_id)

• Call identifier (event field: call-id)

• Timestamp when user joined the conference (event field: ts-join)

• Timestamp when user leaved the conference (event field: ts-leave)

• Duration from start to end (sec.ms) (event field: duration)

• From (event field: from)

• Call local tag (if one) (event field: local_tag)

• Remote URI (event field: r-uri)

• Caller source IP (event field: source)

• Caller source port (event field: src-port)

• Callee (event field: to)

14.4. New restify CDR process 256

FRAFOS ABC SBC User Guide, Release 5.5.2

Tweak

CDR format may be tweaked as needed, by adding / removing fields from the configuration file entry
(/etc/frafos/restify-cdr.conf). All fields from the linked events are available via config.

14.4. New restify CDR process 257

Index

R
RFC

RFC 1889, 4
RFC 2327, 4
RFC 2617, 98
RFC 2782, 87
RFC 2833, 104
RFC 3261, 4, 80, 101, 105, 128, 238
RFC 3263, 20, 23, 81, 87
RFC 3264, 106
RFC 3325, 95, 100, 238
RFC 3581, 7
RFC 3608, 239
RFC 3711, 157
RFC 3761, 154
RFC 3960, 101
RFC 4028, 234
RFC 4122, 145
RFC 4145, 112
RFC 4244, 105, 238
RFC 4347, 157
RFC 4474, 154
RFC 4733, 104
RFC 5242, 157
RFC 5245, 10
RFC 5359, 102
RFC 5389, 10, 157
RFC 5628, 7
RFC 5766, 10
RFC 5806, 105, 238
RFC 5853, 7
RFC 6044, 105
RFC 6062, 157
RFC 6140, 128, 152
RFC 6386, 157
RFC 6716, 157
RFC 7118, 157

258

	About the ABC Session Border Controller
	How to Start?
	Credits

	Introduction
	A Brief Introduction to History and Architecture of SIP
	What is a Session Border Controller (SBC)?
	General Behavior of SBCs
	General Deployment Scenarios of SBCs

	Do You Need an SBC?
	ABC SBC Networking Concepts
	Network Topology
	SBC Interfaces
	Call Agents
	Realms
	A-B-C rules
	Conditions and Actions
	Routing rules

	Practical Guide to the ABC SBC
	Network Planning Guidelines
	Topology Model
	IP layer topology
	IP layer security
	Call Agents (CAs)
	Realms

	SBC Logic
	Routing
	Media Anchoring
	Media Restrictions
	Registrar Cache
	NAT Handling
	SBC High Availability
	Downstream Failover and Load-Balancing
	Dialing Plan Mediation

	Security Policies
	Restricting Traffic from Unwanted Sources
	Topology Hiding

	Capacity planning
	Cluster Size
	Bandwidth
	Public IP Address Space

	IT Integration
	RESTful interface
	Recording
	Monitoring
	Mass Provisioning
	Call Detail Record (CDR) Exports
	DNS Naming

	Planning Checklists
	A Typical SBC Configuration Example
	Identifying Network topology
	Describing ABC SBC Realms and Call Agents
	Provisioning Call Agents Using RPC
	Provisioning Call Agents Using REST API

	Configuring Registration Cache and Throttling
	SIP Routing
	Configuring NAT Handling and Media Anchoring
	Configuring transparent dialog IDs
	Setting up tracing
	Summary of rules
	Setting Call Limits
	Blacklisting specific IPs and User Agents
	Handling P-Asserted-Identity
	Where to go from here

	Initial Configuration
	SBC Interfaces Overview
	Web GUI Configuration (Cluster Config Master)
	Configuration synchronization in pull mode
	Configuration synchronization in push mode

	Setting Up Web Interface Access and User Accounts
	Default User Accounts

	ABC SBC License
	Interface Configuration
	Physical and System Interfaces
	SBC nodes
	Configuring Virtual IP (VIP) Address (OPTIONAL: in HA mode only)

	SBC Interfaces
	Retro Compatibility
	Common issues and fixes
	Applications

	TLS profiles Configuration
	TLS profile options
	Certificate requirements
	Let’s encrypt gocertbot
	Renewal
	Settings example
	Process
	http01
	dns01
	Success
	Failure

	Requirement
	Renewal
	Limitations
	Debug

	Hardware Specific Configurations
	Network adapters
	Configuration of SBC Number of Threads
	Configuration of sysctl settings

	General ABC Configuration Guide
	Physical, System and SBC Interfaces
	Defining Rules
	Condition Types
	Condition Operators
	Condition Values and Regular Expressions
	Actions
	Additional rule properties

	Using Replacements in Rules
	Example Use of Replacement Expressions

	Using Regular Expression Backreferences in Rules
	Binding Rules together with Call Variables
	SIP Routing
	Routing Rules (B)
	Static Routes
	Table-based Dynamic Routes
	Request-URI Based Routes
	Determination of the IP destination and Next-hop Load-Balancing
	IP Blacklisting: Adaptive Availability Management
	SIP Routing by Example

	View A-B-C rules
	SIP Mediation
	Why is SIP Mediation Needed?
	Request-URI Modifications
	Changing Identity
	Substitution Expressions

	SIP Header Processing
	SIP Header Modification Examples
	Option tags

	Early Media, Ring Back Tone and Forking
	Call transfers
	INVITE with Replaces handling
	Mapping Dialog-IDs in INVITEs with Replaces
	Other mediation actions

	SDP Mediation
	Codec Signaling
	Media Type Filtering
	CODEC Filtering
	CODEC Preference
	SDP Bandwidth attribute limiting

	Media Handling
	Introduction
	Media Anchoring (RTP Relay)
	RTP, RTCP and FAX (T.38) Relay
	Symmetric RTP Mode and NATs
	Intelligent Relay (Media Path Optimization)
	Advanced Anchoring Options

	RTP and SRTP Interworking
	SRTP End to End encryption
	Transcoding
	Audio Recording
	SIPREC specific options

	Playing Audio Announcements
	Onboard Conferencing
	Conferencing room pin protected
	Record and play username
	Username recording
	New announces

	Multi lingual conferencing announcements

	NAT Traversal
	NAT Traversal Configuration Example

	Registration Caching and Handling
	Registration Handling Configuration Options
	Registrar off-load
	Registration Caching and Handling by Example
	Registration Agent

	Call Data Records (CDRs)
	CDRs Location
	CDR Format
	Access to CDRs
	Customized CDR Records

	Advanced Use Cases with Provisioned Data
	RESTful Interface
	RESTful Interface using Digest Authentication Example

	Provisioned Tables
	Configuring Tables
	Provisioned Table Example: Static Registration
	Provisioned Table Example: URI Blacklist
	Table Example: Dialing Plan Normalization and Least-Cost-Routing
	Table Example: Bulk Registration
	Provisioning Tables Using RPC or REST API

	ENUM Queries

	SIP-WebRTC Gateway
	WebRTC Network Architecture and Protocols
	WebRTC Network Configuration
	WebRTC Credentials Configuration
	WebRTC Rules Configuration
	WebRTC Interoperability Recommendations

	Amazon Elastic Cloud Configuration Cookbook
	Before you Start: Prerequisites and Important Warnings
	Quick Start Using Cloud Formation
	Quick Start: Launch Single Instance
	Updating License
	Introducing Geographic Dispersion
	Monitoring the Autoscaling Cluster Using CloudWatch
	Performance Recommendations

	Template parameters
	Definition of Template Parameter
	Define parameter directly in input field
	Define parameters on the “Cluster config parameters” screen

	Set specific values for Template Parameters

	ABC SBC System administration
	User Management
	GUI User Management
	CLI User Management
	GUI Two Factor Authentication
	Passwordless authentication

	Server Administration
	SSH to host

	Backup and Restore Operations
	ABC SBC Configuration Management
	ABC SBC Configuration Backup
	ABC SBC Recovery Procedure
	Manual Backup of the Complete SBC Configuration
	Manual Restore of the Complete SBC Configuration

	How to setup a Semi-redundant CCM on ABC SBC
	Setup primary CCM node
	Setup backup CCM node
	Configure configuration snapshot backups
	Setup configuration backups transfer to backup CCM node
	Steps to make the backup CCM available in case of primary CCM node failure
	Steps to be done on SBC nodes to start using new CCM
	Additional steps and checks

	Upgrade Procedure
	Container ABC SBC upgrade

	Migration from 4.5/4.6 to 5.0
	ABC SBC migration procedure
	Expected things which might be surprising
	Expected things which might be surprising

	SBC Dimensioning and Performance Tuning
	Trunking Use Case
	Trunking with Transcoding
	Traffic Estimates for Residential VoIP
	Performance Tuning

	Removing SBC Node
	High Availability administration
	High Availability statuses
	High Availablility switchover
	External track point for lowering HA priority

	Monitoring and Troubleshooting
	Overview of Monitoring and Troubleshooting Techniques
	Live ABC SBC Information
	Registration Cache
	Live Calls
	Destination Blacklists
	Registration Agents
	Call Agents status
	Conference Rooms
	System status
	User Recent Traffic
	View Logs

	Measurements and Monitoring
	Prometheus Configuration
	SNMP Configuration
	General Prometheus Statistics
	Prometheus Statistics per Realm / Call Agent
	Prometheus Statistics per Interfaces
	User Defined Counters

	Additional Sources of Diagnostics Information
	Viewing ABC SBC Logs
	Coredumps

	Securing SIP Networks using ABC SBC and ABC Monitor (optional)
	SIP Security Principles: Collect, Analyze and Police
	Police: Devising Security Rules in the ABC SBC
	Manual IP-layer Blocking
	Automatic IP Address Blocking
	Scoring system
	Setting up automatic blacklisting

	Automatic Proactive Blocking: Greylisting
	Manual SIP Traffic Blocking
	Blocking by User-Agent, From and Other SIP Headers Fields
	Blocking by IP Address
	Blocking by IP Address Range
	Blocking a User by his Registration Status
	Blocking by Geographic Origin

	Traffic Limiting and Shaping
	Traffic Limiting and Shaping by Example
	Bandwidth limits by example

	Call Duration Control
	Setting Call Length Limits
	Controlling SIP Session Timers (SST)
	Setting RTP Inactivity Timer and Keepalive Timer

	Collect Events: Gathering Usage Data in the ABC Monitor
	Reporting Security Events
	Setting up Diagnostic Events

	Practices for Devising Secure Rule-basis
	Topology Hiding
	Default Address Hiding
	Transparent and Non-Transparent Dialog ID
	Hiding Addresses in Well-known SIP header-fields
	Hiding Contact Header in REGISTER
	Hiding All Other Header Fields
	Concealing Media
	Preventing SIP Digest Leak:
	Preventing Resource Exhaustion Attacks:

	Devising a secure rule-base
	Shaping the Signaling Rate
	Instant Responses
	Dropping
	Database Checks
	More Limits
	Diagnostic Events
	Processing Legitimate Traffic

	Preview of Experimental Features
	Using Two-Factor Authentication for Users
	Prerequisites
	Rules for Two Factor Authentication Processing
	Rules for determining User Status and discriminating by it
	Routing Rule to Connect Two Factor Authentication Processing and User Discrimination
	Scenario Modifications

	AWS: Reputation Lists
	Setting Up ABC SBC for Use of Reputation List on AWS
	Setting Up ABC Monitor for Use of Reputation List on AWS

	Server Transaction limits
	Setting proper limits

	New restify CDR process
	CDRs Location
	CDRs configuration
	CDR Format
	classic
	webconf
	Tweak

	Index

